The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152067 Expansion of 1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)). 1
 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 2, 2, 1, 1, 3, 4, 5, 4, 4, 5, 7, 10, 11, 11, 12, 15, 19, 24, 27, 30, 34, 41, 51, 60, 70, 80, 93, 111, 133, 157, 183, 213, 250, 296, 350, 413, 483, 566, 666, 785, 926, 1089, 1279, 1502, 1767, 2081, 2450, 2881, 3387, 3982 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,1,1,0,0,0,0,-1). FORMULA From Colin Barker, Dec 17 2017: (Start) G.f.: 1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)). a(n) = a(n-5) + a(n-6) + a(n-7) - a(n-12) for n>11. (End) MATHEMATICA f[x_] = 1 - x^5 - x^6 - x^7 + x^12; g[x] = ExpandAll[x^12*f[1/x]]; a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}] PROG (PARI) Vec(1 / ((1 - x + x^2)*(1 + x - x^3 - x^4 - x^5 - x^6 - x^7 + x^9 + x^10)) + O(x^100)) \\ Colin Barker, Dec 17 2017 CROSSREFS Sequence in context: A159853 A087698 A101677 * A286756 A193884 A128084 Adjacent sequences:  A152064 A152065 A152066 * A152068 A152069 A152070 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Nov 23 2008 EXTENSIONS New name using Colin Barker's g.f. from Joerg Arndt, Dec 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 03:12 EDT 2020. Contains 334828 sequences. (Running on oeis4.)