login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131823
Triangle read by rows of [2^(n+1) - (n+1)] terms where row n has the g.f.: Product_{i=0..n-1} (1 + x^(2^i))^(n-i) for n>0, starting with a '1' in row 0.
2
1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 5, 7, 8, 8, 8, 8, 7, 5, 3, 1, 1, 4, 9, 16, 24, 32, 40, 48, 55, 60, 63, 64, 64, 64, 64, 64, 63, 60, 55, 48, 40, 32, 24, 16, 9, 4, 1, 1, 5, 14, 30, 54, 86, 126, 174, 229, 289, 352, 416, 480, 544, 608, 672, 735, 795, 850, 898, 938, 970, 994, 1010, 1019
OFFSET
0,5
COMMENTS
Generating rule: Start with a single '1' in row 0; let S(n) denote the initial [2^(n+1) - (n+1)] terms of the partial sums of row n; generate row n+1 by concatenating the following: S(n), 2^[n*(n-1)/2] repeated (n-1) times and the terms of S(n) when read in reverse order.
LINKS
Jordan Stoyanov, Christophe Vignat, Non-Conventional Limits of Random Sequences Related to Partitions of Integers, arXiv:1901.04029 [math.PR], 2019. [See page 2 and appendix for additional properties of this sequence.]
C. Vignat, T. Wakhare, Finite generating functions for the sum of digits sequence, arXiv:1708.06479 [math.NT], 2017.
Tanay Wakhare, Christophe Vignat, Settling some sum suppositions, arXiv:1805.10569 [math.NT], 2018.
Tanay Wakhare, Christophe Vignat, Settling some sum suppositions, Acta Math. Hungar. (2018).
FORMULA
Row sums are 2^(n*(n+1)/2) for n>=0.
EXAMPLE
Triangle begins:
1;
1,1;
1,2, 2, 2,1;
1,3,5,7,8, 8,8, 8,7,5,3,1;
1,4,9,16,24,32,40,48,55,60,63,64, 64,64,64, 64,63,60,55,48,40,32,24,16,9,4,1; ...
Illustrate the row g.f.s by:
(1+x)^2*(1+x^2) = g.f. of row 2: [1,2,2,2,1];
(1+x)^3*(1+x^2)^2*(1+x^4) = g.f. of row 3: [1,3,5,7,8,8,8,8,7,5,3,1];
(1+x)^4*(1+x^2)^3*(1+x^4)^2*(1+x^8) = g.f. of row 4.
MATHEMATICA
Rest@ Flatten@ Array[{1}~Join~CoefficientList[Series[Product[(1 + x^(2^i))^(# - i), {i, 0, # - 1}], {x, 0, 2^(# + 1) - (# + 1)}], x] &, 5] (* Michael De Vlieger, Aug 21 2018 *)
PROG
(PARI) {T(n, k)=local(A=[1]); if(n==0, 1, for(i=0, n-1, A=concat(Vec((Polrev(A)+O(x^(#A+i)))/(1-x)), Vec(O(x^(#A))+Pol(Vec(Ser(A)/(1-x)))))); A[k+1])}
for(n=0, 6, for(k=0, 2^(n+1)-(n+2), print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A131824 (main diagonal).
Sequence in context: A286756 A193884 A128084 * A089722 A172356 A184948
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Jul 19 2007
STATUS
approved