login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184948
Triangle read by rows: SM(n,m) is the number of symmetric 0-1 matrices of order n such that the total number of 1's is m (n >= 1, 0 <= m <= n^2).
4
1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1, 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1
OFFSET
1,4
LINKS
P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
FORMULA
SM(n,m) is the sum of binomial(n,k) * binomial(n*(n-1)/2,(m-k)/2) over those k with the same parity as m. To see this consider that k is the number of 1s on the diagonal.
From Robert Israel, Feb 02 2011: (Start)
According to Maple,
> simplify(sum(binomial(n,2*j)*binomial(r,M-j),j=0..M)) assuming posint;
binomial(r,M)*hypergeom([-M, -1/2*n, 1/2-1/2*n],[1/2, r-M+1],-1)
> simplify(sum(binomial(n,2*k+1)*binomial(r,M-k),k=0..M)) assuming posint;
n*binomial(r,M)*hypergeom([-M, 1-1/2*n, 1/2-1/2*n],[3/2, r-M+1],-1)
If m is even you want the first formula with r=n*(n-1)/2 and M=m/2.
If m is odd the second formula with r=n*(n-1)/2 and M=(m+1)/2.
Thus for n=5 and m=6,
binomial(10,3)*hypergeom([-3,-5/2,-2],[1/2,8],-1) = 620
and for n=5 and m=5,
5*binomial(10,3)*hypergeom([-3, -3/2, -2],[3/2, 8],-1) = 1060. (End)
G.f. for row n: (1+x)^n*(1+x^2)^(n*(n-1)/2) for n>=1. - Paul D. Hanna, Feb 03 2011
G.f.: A(x,y) = Sum_{n>=1} x^n*(1+y)^n*Product_{k=1..n} (1-x(1+y)(1+y^2)^(2k-2))/(1-x(1+y)(1+y^2)^(2k-1)) due to a q-series identity. - Paul D. Hanna, Feb 03 2011
Sum_{k>=0..n^2} k*SM(n,k) = n^2/2 * 2^(n(n+1)/2).
SM(n,m) = Sum_{k=0..floor(m/2)} C(C(n,2),k)*C(n,m-2*k), from equation (11) in the Cameron et al., reference. - L. Edson Jeffery, Feb 29 2012
EXAMPLE
Triangle begins:
SM(1, m) = 1, 1
SM(2, m) = 1, 2, 2, 2, 1
SM(3, m) = 1, 3, 6, 10, 12, 12, 10, 6, 3, 1
SM(4, m) = 1, 4, 12, 28, 52, 84, 116, 140, 150, 140, 116, 84, 52, 28, 12, 4, 1
SM(5, m) = 1, 5, 20, 60, 150, 326, 620, 1060, 1635, 2295, 2952, 3480, 3780, 3780, 3480, 2952, 2295, 1635, 1060, 620, 326, 150, 60, 20, 5, 1
...
MATHEMATICA
row[n_] := CoefficientList[(1+x)^n (1+x^2)^(n(n-1)/2), x];
Array[row, 5] // Flatten (* Jean-François Alcover, Mar 19 2019 *)
PROG
(PARI) {SM(n, k)=polcoeff((1+x^2)^(n*(n-1)/2)*(1+x)^n, k)} \\ Paul D. Hanna
(PARI) {SM(n, k)=local(A); A=sum(m=1, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)*(1+y^2)^(2*k-2))/(1-x*(1+y)*(1+y^2)^(2*k-1)+x*O(x^n)))); polcoeff(polcoeff(A, n, x), k, y)} \\ Paul D. Hanna
CROSSREFS
Row sums give A006125(n+1).
Cf. A262666.
Sequence in context: A131823 A089722 A172356 * A242775 A079562 A338664
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Feb 03 2011, based on a posting to the Sequence Fans Mailing List by Brendan McKay, Feb 02 2011
STATUS
approved