login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184949
E.g.f. satisfies A(x) = (1-x*A(x))^(-x*A(x)).
14
1, 0, 2, 3, 68, 390, 8334, 98280, 2321136, 42895440, 1167767640, 29323831680, 926869947816, 29169311371200, 1064023191882000, 39974978077332480, 1664929964612590080, 72388846850592384000, 3402723408460217089344, 167636144501378081280000, 8796533195129444799189120
OFFSET
0,3
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = n! * sum(k=0..n, (n+1)^(k-1)*abs(stirling1(n-k,k))/(n-k)!).
a(n) ~ s*(1-r*s) * n^(n-1) / (sqrt(1 - r*s*(2-r*s)*(1-r*s)) * exp(n) * r^n), where r = 0.35521237986941340511033292... and s = 1.49319771092171695325266171... are roots of the system of equations s = (1-r*s)^(-r*s), r*s*(r*s+(-1+r*s)*log(1-r*s)) = 1-r*s. - Vaclav Kotesovec, May 03 2015
E.g.f.: (1/x) * Series_Reversion( x*(1 - x)^x ). - Seiichi Manyama, Sep 21 2024
MAPLE
with(combinat):
a := n-> n! * add((n+1)^(k-1)*abs(stirling1(n-k, k))/(n-k)!, k=0..n):
seq(a(n), n=0..20);
MATHEMATICA
a[n_] := n! * Sum[(n+1)^(k-1)*Abs[StirlingS1[n-k, k]]/(n-k)!, {k, 0, n}]; Table [a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 21 2015, from formula *)
CROSSREFS
Cf. A371147.
Sequence in context: A041249 A356795 A360817 * A132598 A257173 A232618
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 03 2011
EXTENSIONS
Edited by Alois P. Heinz, Feb 03 2011
STATUS
approved