login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172356
Triangle T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3), read by rows.
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 6, 6, 3, 1, 1, 4, 12, 24, 12, 4, 1, 1, 6, 24, 72, 72, 24, 6, 1, 1, 9, 54, 216, 324, 216, 54, 9, 1, 1, 13, 117, 702, 1404, 1404, 702, 117, 13, 1, 1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1
OFFSET
0,12
FORMULA
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n,q) = Product_{j=1..n} f(j,q), f(n,q) = q*f(n-1,q) + f(n-3,q), f(0,q) = 0, f(1,q) = f(2,q) = 1, and q = 1.
T(n, k) = round( c(n)/(c(k)*c(n-k)) ), where c(n) = Product_{j=1..n} A078012(j+3). - G. C. Greubel, May 09 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 2, 2, 2, 1;
1, 3, 6, 6, 3, 1;
1, 4, 12, 24, 12, 4, 1;
1, 6, 24, 72, 72, 24, 6, 1;
1, 9, 54, 216, 324, 216, 54, 9, 1;
1, 13, 117, 702, 1404, 1404, 702, 117, 13, 1;
1, 19, 247, 2223, 6669, 8892, 6669, 2223, 247, 19, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], q*f[n-1, q] + f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return fibonacci(n) if (n<3) else q*f(n-1, q) + f(n-3, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
CROSSREFS
cf. A078012.
Sequence in context: A128084 A131823 A089722 * A184948 A242775 A079562
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms by G. C. Greubel, May 09 2021
STATUS
approved