The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172358 Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments. 3
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 9, 9, 3, 1, 1, 5, 15, 45, 15, 5, 1, 1, 9, 45, 135, 135, 45, 9, 1, 1, 11, 99, 495, 495, 495, 99, 11, 1, 1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1, 1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,12 COMMENTS Start from the sequence A159284 and its partial products c(n) = 1, 1, 1, 1, 3, 9, 45, 405, 4455, 84645, 2454705, ... . Then T(n,k) = round( c(n)/(c(k)*c(n-k)) ). LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened FORMULA T(n, k, q) = round(c(n,q)/(c(k,q)*c(n-k,q)), where c(n,q) = Product_{j=1..n} f(j,q), f(n, q) = f(n-2, q) + q*f(n-3, q), f(0,q)=0, f(1,q) = f(2,q) = 1, and q = 2. - G. C. Greubel, May 09 2021 EXAMPLE Triangle begins as:   1;   1,  1;   1,  1,   1;   1,  1,   1,    1;   1,  3,   3,    3,     1;   1,  3,   9,    9,     3,     1;   1,  5,  15,   45,    15,     5,     1;   1,  9,  45,  135,   135,    45,     9,    1;   1, 11,  99,  495,   495,   495,    99,   11,   1;   1, 19, 209, 1881,  3135,  3135,  1881,  209,  19,  1;   1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1; MATHEMATICA f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]]; c[n_, q_]:= Product[f[j, q], {j, n}]; T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])]; Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *) PROG (Sage) @CachedFunction def f(n, q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q) def c(n, q): return product( f(j, q) for j in (1..n) ) def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q))) flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021 CROSSREFS Cf. A172353 (q=1), this sequence (q=2), A172359 (q=4), A172360 (q=5). Sequence in context: A190906 A080311 A135368 * A119560 A172364 A323596 Adjacent sequences:  A172355 A172356 A172357 * A172359 A172360 A172361 KEYWORD nonn,tabl,less AUTHOR Roger L. Bagula, Feb 01 2010 EXTENSIONS Definition corrected to give integral terms by G. C. Greubel, May 09 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 09:23 EDT 2021. Contains 345126 sequences. (Running on oeis4.)