login
A172364
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 10, 30, 30, 10, 1, 1, 31, 310, 930, 310, 31, 1, 1, 94, 2914, 29140, 29140, 2914, 94, 1, 1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1, 1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1
OFFSET
0,12
COMMENTS
Let f be the sequence 0, 1, 1, 1, 3, 10, 31, 94, 285, 865, 2626, 7972, 24201.., f(n) = 3*f(n-1)+f(n-4), and c the partial products of f: c(n) = 1, 1, 1, 1, 3, 30, 930, 87420, 24914700, 21551215500, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).
FORMULA
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*f(n-1, q) + f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 3. - G. C. Greubel, May 08 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 10, 30, 30, 10, 1;
1, 31, 310, 930, 310, 31, 1;
1, 94, 2914, 29140, 29140, 2914, 94, 1;
1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1;
1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, q*f[n-1, q] + f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return 0 if (n==0) else 1 if (n<4) else q*f(n-1, q) + f(n-4, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
CROSSREFS
Cf. A172363 (q=1), this sequence (q=3).
Sequence in context: A135368 A172358 A119560 * A323596 A323375 A140366
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms, G. C. Greubel, May 08 2021
STATUS
approved