login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172364
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 10, 30, 30, 10, 1, 1, 31, 310, 930, 310, 31, 1, 1, 94, 2914, 29140, 29140, 2914, 94, 1, 1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1, 1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1
OFFSET
0,12
COMMENTS
Let f be the sequence 0, 1, 1, 1, 3, 10, 31, 94, 285, 865, 2626, 7972, 24201.., f(n) = 3*f(n-1)+f(n-4), and c the partial products of f: c(n) = 1, 1, 1, 1, 3, 30, 930, 87420, 24914700, 21551215500, ... . Then T(n,k) = round(c(n)/(c(k)*c(n-k))).
FORMULA
T(n, k, q) = round( c(n,q)/(c(k,q)*c(n-k,q)) ), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*f(n-1, q) + f(n-4, q), f(0, q) = 0, f(1, q) = f(2, q) = f(3, q) = 1, and q = 3. - G. C. Greubel, May 08 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 10, 30, 30, 10, 1;
1, 31, 310, 930, 310, 31, 1;
1, 94, 2914, 29140, 29140, 2914, 94, 1;
1, 285, 26790, 830490, 2768300, 830490, 26790, 285, 1;
1, 865, 246525, 23173350, 239457950, 239457950, 23173350, 246525, 865, 1;
MATHEMATICA
f[n_, q_]:= f[n, q]= If[n==0, 0, If[n<4, 1, q*f[n-1, q] + f[n-4, q]]];
c[n_, q_]:= Product[f[j, q], {j, n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 08 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, q): return 0 if (n==0) else 1 if (n<4) else q*f(n-1, q) + f(n-4, q)
def c(n, q): return product( f(j, q) for j in (1..n) )
def T(n, k, q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 08 2021
CROSSREFS
Cf. A172363 (q=1), this sequence (q=3).
Sequence in context: A135368 A172358 A119560 * A323596 A323375 A140366
KEYWORD
nonn,tabl,less
AUTHOR
Roger L. Bagula, Feb 01 2010
EXTENSIONS
Definition corrected to give integral terms, G. C. Greubel, May 08 2021
STATUS
approved