login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172365
List of primes p1, p2 and p3 such that 3*p1 - 2 = 2*p2 - 3 = p3.
1
3, 5, 7, 7, 11, 19, 11, 17, 31, 47, 71, 139, 67, 101, 199, 71, 107, 211, 127, 191, 379, 167, 251, 499, 211, 317, 631, 307, 461, 919, 347, 521, 1039, 431, 647, 1291, 467, 701, 1399, 587, 881, 1759, 727, 1091, 2179, 907, 1361, 2719, 911, 1367, 2731, 991, 1487, 2971
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 3 = p1, a(2) = 5 = p2, a(3) = 7 = p3 because 3*3 - 2 = 2*5 - 3 = 7;
a(4) = 11 = p1, a(5) = 17 = p2, a(6) = 31 = p3 because 3*11 - 2 = 2*17 - 3 = 31.
MAPLE
for n from 1 to 500 do p1 := ithprime(n) ; p3 := 3*p1-2 ; if isprime(p3) then p2 := (p3+3)/2 ; if isprime(p2) then printf("%d, %d, %d, ", p1, p2, p3) ; end if; end if; end do: # R. J. Mathar, May 02 2010
MATHEMATICA
Flatten[Select[Tuples[Prime[Range[450]], {3}], 3First[#]-2==2#[[2]]-3== Last[#]&]] (* Harvey P. Dale, Jun 02 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected (triples 7,11,19 and 167,251,499 inserted) and extended by R. J. Mathar, May 02 2010
STATUS
approved