The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297709 Table read by antidiagonals: Let b be the number of digits in the binary expansion of n. Then T(n,k) is the k-th odd prime p such that the binary digits of n match the primality of the b consecutive odd numbers beginning with p (or 0 if no such k-th prime exists). 0
 3, 5, 7, 7, 13, 3, 11, 19, 5, 23, 13, 23, 11, 31, 7, 17, 31, 17, 47, 13, 5, 19, 37, 29, 53, 19, 11, 3, 23, 43, 41, 61, 37, 17, 0, 89, 29, 47, 59, 73, 43, 29, 0, 113, 23, 31, 53, 71, 83, 67, 41, 0, 139, 31, 19, 37, 61, 101, 89, 79, 59, 0, 181, 47, 43, 7, 41, 67 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For each n >= 1, row n is the union of rows 2n and 2n+1. Rows with no nonzero terms: 15, 21, 23, 28, 30, 31, ... Rows whose only nonzero term is 3: 7, 14, 29, 59, 118, 237, 475, 950, 1901, 3802, 7604, ... Rows whose only nonzero term is 5: 219, 438, 877, 1754, 3508, 7017, 14035, ... For j = 2, 3, 4, ..., respectively, the first row whose only nonzero term is prime(j) is 7, 219, 2921, ...; is there such a row for every odd prime? LINKS EXAMPLE 13 = 1101_2, so row n=13 lists the odd primes p such that the four consecutive odd numbers p, p+2, p+4, and p+6 are prime, prime, composite, and prime, respectively; these are the terms of A022004. 14 = 1110_2, so row n=14 lists the odd primes p such that p, p+2, p+4, and p+6 are prime, prime, prime, and composite, respectively; since there is only one such prime (namely, 3), there is no such 2nd, 3rd, 4th, etc. prime, so the terms in row 14 are {3, 0, 0, 0, ...}. 15 = 1111_2, so row n=15 would list the odd primes p such that p, p+2, p+4, and p+6 are all prime, but since no such prime exists, every term in row 15 is 0. Table begins:   n in base|                    k                   |  OEIS   ---------+----------------------------------------+sequence   10     2 |   1    2    3    4    5    6    7    8 | number   =========+========================================+========    1     1 |   3    5    7   11   13   17   19   23 | A065091    2    10 |   7   13   19   23   31   37   43   47 | A049591    3    11 |   3    5   11   17   29   41   59   71 | A001359    4   100 |  23   31   47   53   61   73   83   89 | A124582    5   101 |   7   13   19   37   43   67   79   97 | A029710    6   110 |   5   11   17   29   41   59   71  101 | A001359*    7   111 |   3    0    0    0    0    0    0    0 |    8  1000 |  89  113  139  181  199  211  241  283 | A124583    9  1001 |  23   31   47   53   61   73   83  131 | A031924   10  1010 |  19   43   79  109  127  163  229  313 |   11  1011 |   7   13   37   67   97  103  193  223 | A022005   12  1100 |  29   59   71  137  149  179  197  239 | A210360*   13  1101 |   5   11   17   41  101  107  191  227 | A022004   14  1110 |   3    0    0    0    0    0    0    0 |   15  1111 |   0    0    0    0    0    0    0    0 |   16 10000 | 113  139  181  199  211  241  283  293 | A124584   17 10001 |  89  359  389  401  449  479  491  683 | A031926   18 10010 |  31   47   61   73   83  151  157  167 |   19 10011 |  23   53  131  173  233  263  563  593 | A049438   20 10100 |  19   43   79  109  127  163  229  313 |   21 10101 |   0    0    0    0    0    0    0    0 |   22 10110 |   7   13   37   67   97  103  193  223 | A022005   23 10111 |   0    0    0    0    0    0    0    0 |   24 11000 | 137  179  197  239  281  419  521  617 |   25 11001 |  29   59   71  149  269  431  569  599 | A049437*   26 11010 |  17   41  107  227  311  347  461  641 |   27 11011 |   5   11  101  191  821 1481 1871 2081 | A007530   28 11100 |   0    0    0    0    0    0    0    0 |   29 11101 |   3    0    0    0    0    0    0    0 |   30 11110 |   0    0    0    0    0    0    0    0 |   31 11111 |   0    0    0    0    0    0    0    0 | *other than the referenced sequence's initial term 3 . Alternative version of table: .   n in base|primal-|               k              |  OEIS   ---------+  ity  +------------------------------+  seq.   10     2 |pattern|   1    2    3    4    5    6 | number   =========+=======+==============================+========    1     1 | p     |   3    5    7   11   13   17 | A065091    2    10 | pc    |   7   13   19   23   31   37 | A049591    3    11 | pp    |   3    5   11   17   29   41 | A001359    4   100 | pcc   |  23   31   47   53   61   73 | A124582    5   101 | pcp   |   7   13   19   37   43   67 | A029710    6   110 | ppc   |   5   11   17   29   41   59 | A001359*    7   111 | ppp   |   3    0    0    0    0    0 |    8  1000 | pccc  |  89  113  139  181  199  211 | A124583    9  1001 | pccp  |  23   31   47   53   61   73 | A031924   10  1010 | pcpc  |  19   43   79  109  127  163 |   11  1011 | pcpp  |   7   13   37   67   97  103 | A022005   12  1100 | ppcc  |  29   59   71  137  149  179 | A210360*   13  1101 | ppcp  |   5   11   17   41  101  107 | A022004   14  1110 | pppc  |   3    0    0    0    0    0 |   15  1111 | pppp  |   0    0    0    0    0    0 |   16 10000 | pcccc | 113  139  181  199  211  241 | A124584   17 10001 | pcccp |  89  359  389  401  449  479 | A031926   18 10010 | pccpc |  31   47   61   73   83  151 |   19 10011 | pccpp |  23   53  131  173  233  263 | A049438   20 10100 | pcpcc |  19   43   79  109  127  163 |   21 10101 | pcpcp |   0    0    0    0    0    0 |   22 10110 | pcppc |   7   13   37   67   97  103 | A022005   23 10111 | pcppp |   0    0    0    0    0    0 |   24 11000 | ppccc | 137  179  197  239  281  419 |   25 11001 | ppccp |  29   59   71  149  269  431 | A049437*   26 11010 | ppcpc |  17   41  107  227  311  347 |   27 11011 | ppcpp |   5   11  101  191  821 1481 | A007530   28 11100 | pppcc |   0    0    0    0    0    0 |   29 11101 | pppcp |   3    0    0    0    0    0 |   30 11110 | ppppc |   0    0    0    0    0    0 |   31 11111 | ppppp |   0    0    0    0    0    0 | .      *other than the referenced sequence's initial term 3 CROSSREFS Cf. A001359, A007530, A022004, A022005, A029710, A031924, A031926, A049437, A049438, A049591, A065091, A124582, A124583, A124584, A210360. Sequence in context: A335046 A060265 A172365 * A242999 A098566 A006540 Adjacent sequences:  A297706 A297707 A297708 * A297710 A297711 A297712 KEYWORD nonn,tabl AUTHOR Jon E. Schoenfield, Apr 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 07:21 EST 2021. Contains 349627 sequences. (Running on oeis4.)