The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297708 Number of permutations p of [n] such that p(p(i)) = i for all i or p(n+1-p(i)) = n+1-i for all i. 5
 1, 1, 2, 6, 14, 46, 132, 444, 1452, 5164, 18680, 71080, 278920, 1135624, 4774448, 20692560, 92381072, 423566224, 1994458656, 9619233888, 47516407008, 239904464608, 1237764055616, 6515682543040, 34984350444736, 191360856810688, 1065970229647232, 6041353305197184 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is likewise the number of ways to place n points on an n X n grid with pairwise distinct abscissa, pairwise distinct ordinate, and mirror symmetry using one or the other of the diagonals of the grid as axis of symmetry. See also A000085 and A135401. For rotational symmetry see A001813 and A006882. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..800 (terms n = 0..99 from Manfred Scheucher) Manfred Scheucher, python program for enumeration FORMULA a(n) = 2*A000085(n) - A135401(n). (Proof: A000085 counts the permutations satisfying the first condition as well as the permutations satisfying the second condition. A135401 counts the permutations satisfying both conditions.) MAPLE a:= proc(n) option remember; `if`(n<7, [1\$2, 2, 6, 14, 46, 132][n+1],       ((-25*n+149)*a(n-1)+(2*(10*n^2-7*n-106))*a(n-2)+        (45*n^2-268*n+298)*a(n-3)-(2*(10*n^2-7*n-61))*a(n-4)        -(65*n^2-367*n+522)*a(n-5)-(2*(10*n^3-67*n^2+96*n+1))*a(n-6)        -(45*n-113)*(n-4)*(n-6)*a(n-7))/(20*n-79))     end: seq(a(n), n=0..35);  # Alois P. Heinz, Jan 07 2018 MATHEMATICA a[n_] := 2*Sum[2^k*BellB[k, 1/2]*StirlingS1[n, k], {k, 0, n}] - Sum[2^k*BellB[k]*StirlingS1[Floor[n/2], k], {k, 0, Floor[n/2]}]; Array[a, 30, 0] (* Jean-François Alcover, May 29 2019 *) PROG (SAGE) def a135401(n): return sum( binomial(floor(n/2), 2*k)*binomial(2*k, k)*factorial(k)*2^(floor(n/2)-2*k) for k in range(1+floor(n/4))) def a85(n): return sum( factorial(n) / (factorial(n-2*k) * 2^k * factorial(k)) for k in range(1+floor(n/2))) def a297708(n): return 2*a85(n) - a135401(n) for n in range(100): print(n, a297708(n)) CROSSREFS Cf. A000085, A001813, A006882, A135401. Sequence in context: A152806 A122109 A133155 * A284701 A011455 A188491 Adjacent sequences:  A297705 A297706 A297707 * A297709 A297710 A297711 KEYWORD nonn AUTHOR Manfred Scheucher, Jan 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 03:03 EST 2021. Contains 349400 sequences. (Running on oeis4.)