login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022004
Initial members of prime triples (p, p+2, p+6).
81
5, 11, 17, 41, 101, 107, 191, 227, 311, 347, 461, 641, 821, 857, 881, 1091, 1277, 1301, 1427, 1481, 1487, 1607, 1871, 1997, 2081, 2237, 2267, 2657, 2687, 3251, 3461, 3527, 3671, 3917, 4001, 4127, 4517, 4637, 4787, 4931, 4967, 5231, 5477
OFFSET
1,1
COMMENTS
Subsequence of A001359. - R. J. Mathar, Feb 10 2013
All terms are congruent to 5 (mod 6). - Matt C. Anderson, May 22 2015
Intersection of A001359 and A023201. - Zak Seidov, Mar 12 2016
LINKS
Matt C. Anderson Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
T. Forbes and Norman Luhn, Prime k-tuplets
R. J. Mathar, Table of Prime Gap Constellations (2013,2024), 275 pages (no not print...)
P. Pollack, Analytic and Combinatorial Number Theory, Course Notes, p. 132, ex. 3.4.3. [Broken link?]
P. Pollack, Analytic and Combinatorial Number Theory, Course Notes, p. 132, ex. 3.4.3.
Eric Weisstein's World of Mathematics, Prime Triplet
MAPLE
A022004 := proc(n)
if n= 1 then
5;
else
for a from procname(n-1)+2 by 2 do
if isprime(a) and isprime(a+2) and isprime(a+6) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Jul 11 2012
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[#+2] && PrimeQ[#+6]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *)
Transpose[Select[Partition[Prime[Range[1000]], 3, 1], Differences[#]=={2, 4}&]][[1]] (* Harvey P. Dale, Dec 24 2011 *)
PROG
(Magma) [ p: p in PrimesUpTo(10000) | IsPrime(p+2) and IsPrime(p+6) ] // Vincenzo Librandi, Nov 19 2010
(PARI) is(n)=isprime(n)&&isprime(n+2)&&isprime(n+6) \\ Charles R Greathouse IV, Jul 01 2013
(Python)
from sympy import primerange
def aupto(limit):
p, q, alst = 2, 3, []
for r in primerange(5, limit+7):
if p+2 == q and p+6 == r: alst.append(p)
p, q = q, r
return alst
print(aupto(5477)) # Michael S. Branicky, May 11 2021
CROSSREFS
Cf. A073648, A098412, A372247 (subsequence).
Subsequence of A007529.
Sequence in context: A136091 A184968 A341357 * A339503 A172454 A162001
KEYWORD
nonn,easy
STATUS
approved