OFFSET
1,1
COMMENTS
The four primes do not have to be consecutive. - Harvey P. Dale, Jul 23 2011
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E30.
P. A. MacMahon, The prime numbers of measurement on a scale, Proc. Camb. Phil. Soc. 21 (1923), 651-654; reprinted in Coll. Papers I, pp. 797-800.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
G. E. Andrews, MacMahon's prime numbers of measurement, Amer. Math. Monthly, 82 (1975), 922-923.
R. L. Graham and C. B. A. Peck, Problem E1910, Amer. Math. Monthly, 75 (1968), 80-81.
Eric Weisstein's World of Mathematics, Prime Triplet.
EXAMPLE
The first two terms correspond to the quadruples (5,7,11,17) and (11,13,17,23).
MAPLE
for n from 1 by 2 to 110000 do; if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+12) then print(n) else fi; od;
MATHEMATICA
Select[Prime[Range[3100]], And@@PrimeQ[{#+2, #+6, #+12}]&] (* Harvey P. Dale, Jul 23 2011 *)
PROG
(PARI) forprime(p=2, 1e4, if(isprime(p+2)&&isprime(p+6)&&isprime(p+12), print1(p", "))) \\ Charles R Greathouse IV, Mar 04 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 03 2010
STATUS
approved