login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375313
Primes p such that the prime triple (p, p+2 or p+4, p+6) generates a prime number when the digits are concatenated.
1
5, 11, 17, 41, 307, 1447, 2377, 3163, 3253, 3457, 4783, 5653, 6547, 7873, 9007, 11171, 11827, 16061, 16187, 19423, 20743, 20897, 21313, 21517, 26107, 27103, 29017, 29021, 33613, 34123, 34841, 34843, 36011, 38917, 39227, 40693, 41177, 47737, 51341, 55213
OFFSET
1,1
LINKS
EXAMPLE
The first term is 5, since the prime triple (p,p+2,p+6) or (5,7,11) generates the prime number 5711 when the digits are concatenated. The fifth term is 307, since the prime triple (p,p+4,p+6) or (307,311,313) generates the prime number 307311313 when the digits are concatenated.
MATHEMATICA
Select[Partition[Prime[Range[6000]], 3, 1], #[[3]]-#[[1]]==6&&PrimeQ[FromDigits[Flatten[ IntegerDigits/@ #]]]&][[;; , 1]] (* Harvey P. Dale, Aug 21 2024 *)
PROG
(Python)
from itertools import islice
from sympy import isprime, nextprime
def agen(): # generator of terms
p, q, r = 2, 3, 5
while True:
if (q == p+2 or q == p+4) and r == p+6:
if isprime(int(str(p) + str(q) + str(r))):
yield p
p, q, r = q, r, nextprime(r)
print(list(islice(agen(), 41))) # Michael S. Branicky, Aug 18 2024
CROSSREFS
Cf. A174858.
Sequence in context: A172454 A162001 A171713 * A174858 A246704 A095183
KEYWORD
nonn,base
AUTHOR
James S. DeArmon, Aug 11 2024
STATUS
approved