OFFSET
1,1
COMMENTS
If p is a d-digit prime of a triple: p*10^(2*d) + (p+2)*10^d + p+6 = (10^(2*d)+10^d+1) * p + 2*(10^d+3) to be a prime.
No such concatenation exists for a 4-digit p: d=4, p*10^8 + (p+2)*10^4 + p+6 = p*(10^8 + 10^4 + 1) + 2*10^4 + 6, coefficients (10^8 + 10^4 + 1) and 2*(10^4 + 3) have both divisor 7.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
EXAMPLE
(5,7,11) is 1st prime triple, 5711 = prime(752), 5 is 1st term of sequence
(11,13,17) is 2nd prime triple, 111317 = prime(10561), 11 is 2nd term of sequence
MATHEMATICA
Transpose[Select[Partition[Prime[Range[20000]], 3, 1], Differences[#]=={2, 4} && PrimeQ[ FromDigits[Flatten[IntegerDigits/@#]]]&]][[1]] (* Harvey P. Dale, Apr 10 2013 *)
CROSSREFS
KEYWORD
base,nonn,uned
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 31 2010
STATUS
approved