OFFSET
1,1
COMMENTS
Original name: Lower prime of a difference of 6 between consecutive primes.
Conjecture: The sequence is infinite and for every n >= 7746, a(n+1) < a(n)^(1+1/n). Namely for n >= 7746, a(n)^(1/n) is a strictly decreasing function of n (See comment lines of the sequence A248855). - Jahangeer Kholdi and Farideh Firoozbakht, Nov 29 2014
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
OEIS wiki, Consecutive primes in arithmetic progression: CPAP with given gap, updated Jan. 2020
EXAMPLE
23 is a term as the next prime 29 = 23 + 6.
MAPLE
A031924 := proc(n)
option remember;
if n = 1 then
return 23;
else
p := nextprime(procname(n-1)) ;
q := nextprime(p) ;
while q-p <> 6 do
p := q ;
q := nextprime(p) ;
end do:
return p;
end if;
end proc: # R. J. Mathar, Jan 23 2013
MATHEMATICA
Transpose[Select[Partition[Prime[Range[200]], 2, 1], Last[#] - First[#] == 6 &]][[1]] (* Bruno Berselli, Apr 09 2013 *)
PROG
(PARI) is(n)=isprime(n)&&nextprime(n+1)-n==6 \\ Charles R Greathouse IV, Mar 21 2013
(PARI) apply( A031924(n, p=2, show=0, g=6)={forprime(q=p+1, , p+g!=(p=q) || (show&&print1(p-g", ")) || n-- || return(p-g))}, [1..99]) \\ Use nxt(p)=A031924(1, p) to get the term following p, use show=1 to print all a(1..n), g to select a different gap. - M. F. Hasler, Jan 02 2020
(Magma) [p: p in PrimesUpTo(1200) | NextPrime(p)-p eq 6]; // Bruno Berselli, Apr 09 2013
(GAP) P:=Filtered([1..1200], IsPrime);;
List(Filtered([1..Length(P)-1], i->P[i+1]-P[i]=6), k->P[k]); # Muniru A Asiru, Jan 30 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
New name from M. F. Hasler, Jan 02 2020
STATUS
approved