The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A029710 Primes such that next prime is 4 greater. 37
 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Union with A124588 gives A124589. - Reinhard Zumkeller, Dec 23 2006 For any prime p > 3, if p + 4 is prime then necessarily it is the next prime. But there cannot be three consecutive primes with mutual distance 4: If p and p + 4 are prime, then p+8 is an odd multiple of 3 (cf. formula). - M. F. Hasler, Jan 15 2013 The smaller members p of cousin prime pairs (p,p+4) excluding p=3. - Marc Morgenegg, Apr 19 2016 LINKS Marius A. Burtea, Table of n, a(n) for n = 1..14741 ( first 1000 terms from R. Zumkeller ) Index entries for primes, gaps between FORMULA a(n) = A031505(n + 1) - 4 = A029708(n) - 2. a(n) = 1 (mod 6) for all n; (a(n) + 2)/3 = A157834(n), i.e., a(n) = 3*A157834(n) - 2. - M. F. Hasler, Jan 15 2013 EXAMPLE 79 is a term as the next prime is 79 + 4 = 83. 3 is not a term even though 3 + 4 = 7 is prime, since it is not the next one. MAPLE for i from 1 to 226 do if ithprime(i+1) = ithprime(i) + 4 then print({ithprime(i)}); fi; od; # Zerinvary Lajos, Mar 19 2007 MATHEMATICA Select[Prime[Range[225]], NextPrime[#] == # + 4 &] (* Alonso del Arte, Jan 17 2013 *) Transpose[Select[Partition[Prime[Range[300]], 2, 1], #[[2]]-#[[1]]==4&]] [[1]] (* Harvey P. Dale, Mar 28 2016 *) PROG (PARI) forprime(p=1, 1e4, if(nextprime(p+1)-p==4, print1(p, ", "))) \\ Felix Fröhlich, Aug 16 2014 (Magma) [p:p in PrimesUpTo(1700)| IsPrime(p+4) and NextPrime(p) eq p+4] // Marius A. Burtea, Jan 24 2019 (MATLAB) p=primes(1700); m=1; for u=1:length(p)-4 if and(isprime(p(u)+4)==1, p(u+1)==p(u)+4); sol(m)=p(u); m=m+1; end end sol % Marius A. Burtea, Jan 24 2019 CROSSREFS Essentially the same as A023200. Cf. A001359, A029708, A031505, A124588, A124589, A157834. Sequence in context: A152087 A098059 A078860 * A145897 A078863 A263091 Adjacent sequences: A029707 A029708 A029709 * A029711 A029712 A029713 KEYWORD nonn AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 11:23 EDT 2023. Contains 365688 sequences. (Running on oeis4.)