login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029710
Primes such that next prime is 4 greater.
38
7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429
OFFSET
1,1
COMMENTS
Union with A124588 gives A124589. - Reinhard Zumkeller, Dec 23 2006
For any prime p > 3, if p + 4 is prime then necessarily it is the next prime. But there cannot be three consecutive primes with mutual distance 4: If p and p + 4 are prime, then p+8 is an odd multiple of 3 (cf. formula). - M. F. Hasler, Jan 15 2013
The smaller members p of cousin prime pairs (p,p+4) excluding p=3. - Marc Morgenegg, Apr 19 2016
LINKS
Marius A. Burtea, Table of n, a(n) for n = 1..14741 ( first 1000 terms from R. Zumkeller )
FORMULA
a(n) = A031505(n + 1) - 4 = A029708(n) - 2.
a(n) = 1 (mod 6) for all n; (a(n) + 2)/3 = A157834(n), i.e., a(n) = 3*A157834(n) - 2. - M. F. Hasler, Jan 15 2013
EXAMPLE
79 is a term as the next prime is 79 + 4 = 83. 3 is not a term even though 3 + 4 = 7 is prime, since it is not the next one.
MAPLE
for i from 1 to 226 do if ithprime(i+1) = ithprime(i) + 4 then print({ithprime(i)}); fi; od; # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
Select[Prime[Range[225]], NextPrime[#] == # + 4 &] (* Alonso del Arte, Jan 17 2013 *)
Transpose[Select[Partition[Prime[Range[300]], 2, 1], #[[2]]-#[[1]]==4&]] [[1]] (* Harvey P. Dale, Mar 28 2016 *)
PROG
(PARI) forprime(p=1, 1e4, if(nextprime(p+1)-p==4, print1(p, ", "))) \\ Felix Fröhlich, Aug 16 2014
(Magma) [p:p in PrimesUpTo(1700)| IsPrime(p+4) and NextPrime(p) eq p+4] // Marius A. Burtea, Jan 24 2019
(MATLAB)
p=primes(1700); m=1;
for u=1:length(p)-4
if and(isprime(p(u)+4)==1, p(u+1)==p(u)+4); sol(m)=p(u); m=m+1; end
end
sol % Marius A. Burtea, Jan 24 2019
CROSSREFS
Essentially the same as A023200.
Sequence in context: A152087 A098059 A078860 * A145897 A078863 A263091
KEYWORD
nonn
STATUS
approved