The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098059 Primes preceding gaps divisible by 4. 6
 7, 13, 19, 37, 43, 67, 79, 89, 97, 103, 109, 127, 163, 193, 199, 211, 223, 229, 277, 307, 313, 349, 359, 379, 389, 397, 401, 439, 449, 457, 463, 467, 479, 487, 491, 499, 509, 613, 619, 643, 661, 673, 683, 701, 719, 739, 743, 757, 761, 769, 797, 823, 853, 859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Prime complement of A098058. - Robert G. Wilson v, Jul 17 2015 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 29 2015 EXAMPLE 7 is a term since the next prime after 7 is 11 and 11-7 is divisible by 4. MAPLE N:= 1000:  # to get all terms up to the second-last prime <= N Primes:= select(isprime, [2, 2*i+1 \$ i=1..floor((N-1)/2)]): Gaps:= Primes[2..-1] - Primes[1..-2]: Primes[select(t-> Gaps[t] mod 4 = 0, [\$1..nops(Gaps)])]; # Robert Israel, Jun 24 2015 MATHEMATICA Prime[Select[Range[150], Mod[Prime[ # + 1] - Prime[ # ], 4] == 0 &]] (* Ray Chandler, Oct 26 2006 *) Transpose[Select[Partition[Prime[Range[200]], 2, 1], Divisible[Last[#]- First[#], 4]&]][[1]] (* Harvey P. Dale, Apr 06 2013 *) PROG (PARI) f(n) = for(x=1, n, z=(prime(x+1)-prime(x)); if(z%4==0, print1(prime(x)", "))) (PARI) p=2; forprime(q=3, 1e4, if((q-p)%4==0, print1(p", ")); p=q) \\ Charles R Greathouse IV, Jun 29 2015 CROSSREFS Cf. A001223, A098058. Sequence in context: A344045 A048646 A152087 * A078860 A029710 A145897 Adjacent sequences:  A098056 A098057 A098058 * A098060 A098061 A098062 KEYWORD easy,nonn AUTHOR Cino Hilliard, Sep 11 2004 EXTENSIONS Edited by Ray Chandler, Oct 26 2006 New name from Robert Israel and Charles R Greathouse IV, Jun 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 13:24 EDT 2022. Contains 353833 sequences. (Running on oeis4.)