login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098059
Primes preceding gaps divisible by 4.
6
7, 13, 19, 37, 43, 67, 79, 89, 97, 103, 109, 127, 163, 193, 199, 211, 223, 229, 277, 307, 313, 349, 359, 379, 389, 397, 401, 439, 449, 457, 463, 467, 479, 487, 491, 499, 509, 613, 619, 643, 661, 673, 683, 701, 719, 739, 743, 757, 761, 769, 797, 823, 853, 859
OFFSET
1,1
COMMENTS
Prime complement of A098058. - Robert G. Wilson v, Jul 17 2015
LINKS
FORMULA
a(n) ~ 2n log n. - Charles R Greathouse IV, Jun 29 2015
EXAMPLE
7 is a term since the next prime after 7 is 11 and 11-7 is divisible by 4.
MAPLE
N:= 1000: # to get all terms up to the second-last prime <= N
Primes:= select(isprime, [2, 2*i+1 $ i=1..floor((N-1)/2)]):
Gaps:= Primes[2..-1] - Primes[1..-2]:
Primes[select(t-> Gaps[t] mod 4 = 0, [$1..nops(Gaps)])]; # Robert Israel, Jun 24 2015
MATHEMATICA
Prime[Select[Range[150], Mod[Prime[ # + 1] - Prime[ # ], 4] == 0 &]] (* Ray Chandler, Oct 26 2006 *)
Transpose[Select[Partition[Prime[Range[200]], 2, 1], Divisible[Last[#]- First[#], 4]&]][[1]] (* Harvey P. Dale, Apr 06 2013 *)
PROG
(PARI) f(n) = for(x=1, n, z=(prime(x+1)-prime(x)); if(z%4==0, print1(prime(x)", ")))
(PARI) p=2; forprime(q=3, 1e4, if((q-p)%4==0, print1(p", ")); p=q) \\ Charles R Greathouse IV, Jun 29 2015
CROSSREFS
Subsequence of A152087.
Sequence in context: A344045 A048646 A152087 * A078860 A029710 A145897
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Sep 11 2004
EXTENSIONS
Edited by Ray Chandler, Oct 26 2006
New name from Robert Israel and Charles R Greathouse IV, Jun 29 2015
STATUS
approved