OFFSET
0,3
COMMENTS
Associated with permutations in Mathieu group M24 of shape (8)^2(4)(2)(1)^2. - Michael Somos, Nov 24 2007
LINKS
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
G. Nebe and N. J. A. Sloane, Home page for this lattice
FORMULA
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = (512)^(1/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 24 2007
EXAMPLE
G.f. = 1 + 30*x^2 + 56*x^3 + 66*x^4 + 144*x^5 + 188*x^6 + 288*x^7 + ...
G.f. = 1 + 30*q^4 + 56*q^6 + 66*q^8 + 144*q^10 + 188*q^12 + 288*q^14 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ With[{e1 = QPochhammer[ x] QPochhammer[ x^8], e2 = QPochhammer[ x^2] QPochhammer[ x^4]}, e2^9 / e1^6 - 6 x e1^2 e2], {x, 0, n}]; (* Michael Somos, Apr 19 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x^2 + A) * eta(x^4 + A) )^9 / ( eta(x + A) * eta(x^8 + A) )^6 - 6 * x * ( eta(x + A) * eta(x^8 + A) )^2 * eta(x^2 + A) * eta(x^4 + A), n))}; /* Michael Somos, Nov 24 2007 */
(PARI) {a(n) = my(G); if( n<0, 0, G = [4, 1, -1, -1, 1, -1; 1, 4, 0, 1, 2, 1; -1, 0, 4, -1, 2, -1; -1, 1, -1, 4, -1, 0; 1, 2, 2, -1, 4, -1; -1, 1, -1, 0, -1, 4]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n, 1)), n))}; /* Michael Somos, Nov 24 2007 */
(Magma) A := Basis( ModularForms( Gamma1(8), 3), 45); A[1] + 30*A[3] + 56*A[4] + 66*A[5] + 144*A[6] + 188*A[7]; /* Michael Somos, Apr 19 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved