login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A030207
Expansion of eta(q)^2 * eta(q^2) * eta(q^4) * eta(q^8)^2 in powers of q.
6
1, -2, -2, 4, 0, 4, 0, -8, -5, 0, 14, -8, 0, 0, 0, 16, 2, 10, -34, 0, 0, -28, 0, 16, 25, 0, 28, 0, 0, 0, 0, -32, -28, -4, 0, -20, 0, 68, 0, 0, -46, 0, 14, 56, 0, 0, 0, -32, 49, -50, -4, 0, 0, -56, 0, 0, 68, 0, -82, 0, 0, 0, 0, 64, 0, 56, 62, 8, 0, 0, 0, 40, -142, 0, -50, -136, 0, 0, 0, 0, -11, 92, 158, 0, 0, -28, 0
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Unique cusp form of weight 3 for congruence group Gamma_1(8). - Michael Somos, Aug 11 2011
Associated with permutations in Mathieu group M24 of shape (8)^2(4)(2)(1)^2.
For n nonzero, a(n) is nonzero if and only if n is in A002479.
Number 20 of the 74 eta-quotients listed in Table I of Martin (1996).
LINKS
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
M. Koike, Mathieu group M24 and modular forms, Nagoya Math. J., 99 (1985), 147-157. MR0805086 (87e:11060)
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * phi(q) * phi(-q)^2 * phi(q^2) * psi(q^4)^2 in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, May 28 2007
Expansion of (3 * phi(q)^3 * phi(q^2)^3 - 2 * phi(q) * phi(q^2)^5 - phi(q)^5 * phi(q^2)) / 4 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jun 13 2007
Euler transform of period 8 sequence [-2, -3, -2, -4, -2, -3, -2, -6, ...]. - Michael Somos, May 28 2007
a(n) is multiplicative with a(2^e) = (-2)^e, a(p^e) = (1+(-1)^e)/2 * p^e if p == 5, 7 (mod 8), a(p^e) = a(p)*a(p^(e-1)) - p^2*a(p^(e-2)) if p == 1, 3 (mod 8) where a(p) = 4*x^2 -2*p and p = x^2 + 2*y^2. - Michael Somos, Jun 13 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 512^(1/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 25 2007
G.f.: (1/2) * Sum_{u,v in Z} (u*u - 2*v*v) * x^(u*u + 2*v*v). - Michael Somos, Jun 14 2007
G.f.: x * Product_{k>0} (1 - x^k)^6 * (1 + x^k)^4 * (1 + x^(2*k))^3 * (1 + x^(4*k))^6. - Michael Somos, May 28 2007
a(8*n + 5) = a(8*n + 7) = 0. a(2*n) = -2*a(n). a(8*n + 1) = A128712(n). a(8*n + 3) = -2 * A128713(n).
EXAMPLE
G.f. = q - 2*q^2 - 2*q^3 + 4*q^4 + 4*q^6 - 8*q^8 - 5*q^9 + 14*q^11 - 8*q^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4] QPochhammer[ q^8]^2, {q, 0, n}]; (* Michael Somos, Aug 11 2011 *)
a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q]^2 EllipticTheta[ 3, 0, q^2] EllipticTheta[ 2, 0, q^2]^2, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
a[ n_] := SeriesCoefficient[ (-EllipticTheta[ 3, 0, q]^5 EllipticTheta[ 3, 0, q^2] + 3 EllipticTheta[ 3, 0, q]^3 EllipticTheta[ 3, 0, q^2]^3 - 2 EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2]^5) / 4, {q, 0, n}]; (* Michael Somos, May 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^8 + A))^2 * eta(x^2 + A) * eta(x^4 + A), n))}; /* Michael Somos, May 28 2007 */
(PARI) {a(n) = my(A, p, e, x, y, a0, a1); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (-2)^e, p%8>4, if( e%2, 0, p^e), for( x=1, sqrtint(p\2), if( issquare( p - 2*x^2, &y), break)); y = 4*y^2 - 2*p; a0=1; a1=y; for( i=2, e, x = y*a1 - p^2*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Jun 13 2007 */
(Sage) CuspForms( Gamma1(8), 3, prec = 100).0; # Michael Somos, Aug 11 2011
(Magma) Basis( CuspForms( Gamma1(8), 3), 100) [1]; /* Michael Somos, May 27 2014 */
CROSSREFS
KEYWORD
sign,mult
AUTHOR
STATUS
approved