OFFSET
0,2
COMMENTS
Number 28 of the 74 eta-quotients listed in Table I of Martin (1996).
Expansion of a newform level 12 weight 3 and character [0, 1].
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
Author?, Eta Products and Quotients which are Newforms. [Broken link?]
M. Koike, On McKay's conjecture, Nagoya Math. J., 95 (1984), 85-89.
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
FORMULA
Euler transform of period 3 sequence [ -3, -3, -6, ...]. - Michael Somos, Feb 13 2006
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-3)^e, b(p^e) = (1 + (-1)^e) / 2 * p^e if p == 5 (mod 6), b(p^e) = b(p) * b(p^(e-1)) - p^2 * b(p^(e-2)) otherwise. - Michael Somos, Feb 13 2006
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(3*k)))^3.
G.f.: Sum_{k>=0} a(k) * q^(2*k + 1) = (1/2) * Sum_{u, v in Z} (u*u - 3*v*v) * q^(u*u + 3*v*v). - Michael Somos, Jun 14 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 12^(3/2) (t/i)^3 f(t) where q = exp(2 Pi i t). - Michael Somos, Nov 16 2008
a(3*n + 1) = -3 * a(n). a(3*n + 2) = 0. a(3*n) = A152243(n). - Michael Somos, Mar 09 2012
a(n) = (-1)^n * A209939(n). - Michael Somos, Mar 16 2012
Convolution square is A007332. - Michael Somos, Nov 16 2008
EXAMPLE
G.f. = 1 - 3*x + 2*x^3 + 9*x^4 - 22*x^6 + 26*x^9 - 6*x^10 + 25*x^12 - 27*x^13 + ...
G.f. = q - 3*q^3 + 2*q^7 + 9*q^9 - 22*q^13 + 26*q^19 - 6*q^21 + 25*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] QPochhammer[ x^3])^3, {x, 0, n}]; (* Michael Somos, May 17 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^3, n))}; /* Michael Somos, Jun 14 2007 */
(Magma) A := Basis( CuspForms( Gamma1(12), 3), 140); A[1] - 3*A[3]; /* Michael Somos, May 17 2015 */
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved