The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231101 a(n)=3*a(n-3)+a(n-2), a(0)=3, a(1)=0, a(2)=2. 0
 3, 0, 2, 9, 2, 15, 29, 21, 74, 108, 137, 330, 461, 741, 1451, 2124, 3674, 6477, 10046, 17499, 29477, 47637, 81974, 136068, 224885, 381990, 633089, 1056645, 1779059, 2955912, 4948994 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)=r^n+s^n+t^n, where r,s,t are the roots of x^3-x-3. If p is prime then p divides a(p). Both this and the Perrin sequence are linear recurrences with a(n) depending on a(n-3) and a(n-2) but not on a(n-1), with the same initial conditions; both are sums of powers of roots of a cubic: Perrin: a(n) = r^n+s^n+t^n with r,s,t roots of x^3-x-1 this seq: a(n) = r^n+s^n+t^n with r,s,t roots of x^3-x-3.  See crossrefs. LINKS Index entries for linear recurrences with constant coefficients, signature (0,1,3). FORMULA a(n)=3*a(n-3)+a(n-2), a(0)=3, a(1)=0, a(2)=2. a(n)=r^n+s^n+t^n, where r,s,t are the roots of x^3-x-3. G.f.: (x^2-3)/(3*x^3+x^2-1). MAPLE a:=proc(n) option remember: if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else 3*a(n-3)+a(n-2) end if end proc: bign:=30: seq(a(n), n=0..bign); CROSSREFS Cf. A001608, A072328. Sequence in context: A059683 A030208 A209939 * A193084 A126598 A326602 Adjacent sequences:  A231098 A231099 A231100 * A231102 A231103 A231104 KEYWORD nonn,easy AUTHOR James R. Buddenhagen, Nov 05 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 20:01 EDT 2021. Contains 345009 sequences. (Running on oeis4.)