login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326602
G.f.: Sum_{n>=0} (x^(2*n-1) + 1)^n * x^n / (1 + x^(2*n+1))^(n+1), an even function.
3
1, 3, 0, 2, 9, -12, 8, 12, -10, 15, -36, 46, -18, 20, 12, -82, 101, -162, 302, -168, -100, 92, 32, 40, -244, 351, -452, 1052, -1528, 1144, -394, -494, 948, -438, 370, -1474, 2805, -2860, 2560, -4762, 6554, -4104, 926, 480, -1820, 3074, -2546, 1072, -2518, 9745, -17810, 21300, -28982, 37560, -26380, 6162, 686, 2, 2364, -12342, 30356, -39584, 19448, 7562, 9491, -63824, 99128, -116668
OFFSET
0,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^(2*n), where
(1) A(x) = Sum_{n>=0} (x^(2*n-1) + 1)^n * x^n / (1 + x^(2*n+1))^(n+1),
(2) A(x) = Sum_{n>=0} (x^(2*n-1) - 1)^n * x^n / (1 - x^(2*n+1))^(n+1),
(3) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (x^(2*n-1) - x^(2*k))^(n-k),
(4) A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (x^(2*n-1) + x^(2*k))^(n-k) * (-1)^k.
a(n) is odd iff n is square (conjecture).
EXAMPLE
G.f.: A(x) = 1 + 3*x^2 + 2*x^6 + 9*x^8 - 12*x^10 + 8*x^12 + 12*x^14 - 10*x^16 + 15*x^18 - 36*x^20 + 46*x^22 - 18*x^24 + 20*x^26 + 12*x^28 - 82*x^30 + ...
such that
A(x) = 1/(1 + x) + (1 + x)*x/(1 + x^3)^2 + (1 + x^3)^2*x^2/(1 + x^5)^3 + (1 + x^5)^3*x^3/(1 + x^7)^4 + (1 + x^7)^4*x^4/(1 + x^9)^5 + (1 + x^9)^5*x^5/(1 + x^11)^6 + (1 + x^11)^6*x^6/(1 + x^13)^7 + (1 + x^13)^7*x^7/(1 + x^15)^8 + ...
also
A(x) = 1/(1 - x) - (1 - x)*x/(1 - x^3)^2 + (1 - x^3)^2*x^2/(1 - x^5)^3 - (1 - x^5)^3*x^3/(1 - x^7)^4 + (1 - x^7)^4*x^4/(1 - x^9)^5 - (1 - x^9)^5*x^5/(1 - x^11)^6 + (1 - x^11)^6*x^6/(1 - x^13)^7 - (1 - x^13)^7*x^7/(1 - x^15)^8 + ...
AS A TRIANGLE.
This sequence may be written as a triangle like so
1,
3, 0, 2,
9, -12, 8, 12, -10,
15, -36, 46, -18, 20, 12, -82,
101, -162, 302, -168, -100, 92, 32, 40, -244,
351, -452, 1052, -1528, 1144, -394, -494, 948, -438, 370, -1474,
2805, -2860, 2560, -4762, 6554, -4104, 926, 480, -1820, 3074, -2546, 1072, -2518,
9745, -17810, 21300, -28982, 37560, -26380, 6162, 686, 2, 2364, -12342, 30356, -39584, 19448, 7562,
9491, -63824, 99128, -116668, 167616, -212884, 156266, -32564, -35108, 21732, 3952, -4058, -19496, 89988, -200198, 251662, -198964, ...
in which the terms a(n^2) form the leftmost column.
The odd terms seem to occur only at a(n^2) and begin:
[1, 3, 9, 15, 101, 351, 2805, 9745, 9491, 138675, 776675, 7430517, 43105515, ...].
PROG
(PARI) {a(n) = my(A = sum(m=0, 2*n+1, (x^(2*m-1) - 1 +O(x^(2*n+2)) )^m * x^m / (1 - x^(2*m+1) +O(x^(2*n+2)) )^(m+1) ));
polcoeff(A, 2*n)}
for(n=0, 100, print1(a(n), ", "))
(PARI) {a(n) = my(A = sum(m=0, 2*n+1, (x^(2*m-1) + 1 +O(x^(2*n+2)) )^m * x^m / (1 + x^(2*m+1) +O(x^(2*n+2)) )^(m+1) ));
polcoeff(A, 2*n)}
for(n=0, 100, print1(a(n), ", "))
CROSSREFS
Sequence in context: A231101 A193084 A126598 * A256548 A239098 A319501
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 08 2019
STATUS
approved