The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326605 G.f.: Sum_{n>=0} (2*n + 1) * x^n * (9 - x^n)^n. 3
 1, 27, 402, 5103, 58959, 649539, 6907037, 71744535, 731768013, 7360989480, 73222111566, 721764371007, 7060733810570, 68630377364883, 663426925392564, 6382625095014309, 61149665581626645, 583701359488329915, 5553501498629257581, 52683216989246691471, 498464283739975769250 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS G.f. is congruent modulo 9 to Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)). The cube root of the g.f. A(x) is an integer series (cf. A326606), and is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..400 FORMULA G.f.: Sum_{n>=0} (2*n+1) * x^n * (9 - x^n)^n. G.f.: Sum_{n>=0} (-1)^n * (2*n+1 + 9*x^(n+1)) * x^(n*(n+1)) / (1 - 9*x^(n+1))^(n+2). a(n) ~ 2*n*3^(2*n). - Vaclav Kotesovec, Oct 09 2019 EXAMPLE G.f.: A(x) = 1 + 27*x + 402*x^2 + 5103*x^3 + 58959*x^4 + 649539*x^5 + 6907037*x^6 + 71744535*x^7 + 731768013*x^8 + 7360989480*x^9 + 73222111566*x^10 + ... such that A(x) = 1 + 3*x*(9-x) + 5*x^2*(9-x^2)^2 + 7*x^3*(9-x^3)^3 + 9*x^4*(9-x^4)^4 + 11*x^5*(9-x^5)^5 + 13*x^6*(9-x^6)^6 + 15*x^7*(9-x^7)^7 + ... Also, A(x) = (1 + 9*x)/(1 - 9*x)^2 - (3 + 9*x^2)*x^2/(1 - 9*x^2)^3 + (5 + 9*x^3)*x^6/(1 - 9*x^3)^4 - (7 + 9*x^4)*x^12/(1 - 9*x^4)^5 + (9 + 9*x^5)*x^20/(1 - 9*x^5)^6 - (11 + 9*x^6)*x^30/(1 - 9*x^6)^7 + (13 + 9*x^7)*x^42/(1 - 9*x^7)^8 + ... RELATED SERIES. A(x) is congruent modulo 9 to A(x) (mod 9) = 1 - 3*x^2 + 5*x^6 - 7*x^12 + 9*x^20 - 11*x^30 + 13*x^42 - 15*x^56 + 17*x^72 - 19*x^90 + 21*x^110 + ... + (-1)^n*(2*n+1)*x^(n*(n+1)) + ... The cube root of the g.f. is an integer series: A(x)^(1/3) = 1 + 9*x + 53*x^2 + 504*x^3 + 3479*x^4 + 34362*x^5 + 248799*x^6 + 2483091*x^7 + 18383088*x^8 + 185472450*x^9 + 1378756330*x^10 + ... + A326606(n)*x^n + ... which is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n), A(x)^(1/3) (mod 3) = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + x^44 + x^52 - x^70 - x^80 + x^102 + x^114 - x^140 - x^154 + x^184 + x^200 + ... PROG (PARI) /* By definition */ {a(n) = my(A = sum(m=0, n, (2*m + 1) * x^m * (9 - x^m + x*O(x^n))^m)); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) (PARI) /* Accelerated series */ {a(n) = my(A = sum(m=0, sqrtint(n+1), (-1)^m * (2*m + 1 + 9*x^(m+1))* x^(m*(m+1)) / (1 - 9*x^(m+1) + x*O(x^n))^(m+2) )); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A326606. Sequence in context: A251770 A033280 A125462 * A296853 A036222 A022655 Adjacent sequences: A326602 A326603 A326604 * A326606 A326607 A326608 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 16:32 EST 2023. Contains 367680 sequences. (Running on oeis4.)