login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326605 G.f.: Sum_{n>=0} (2*n + 1) * x^n * (9 - x^n)^n. 3
1, 27, 402, 5103, 58959, 649539, 6907037, 71744535, 731768013, 7360989480, 73222111566, 721764371007, 7060733810570, 68630377364883, 663426925392564, 6382625095014309, 61149665581626645, 583701359488329915, 5553501498629257581, 52683216989246691471, 498464283739975769250 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
G.f. is congruent modulo 9 to Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)).
The cube root of the g.f. A(x) is an integer series (cf. A326606), and is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n).
LINKS
FORMULA
G.f.: Sum_{n>=0} (2*n+1) * x^n * (9 - x^n)^n.
G.f.: Sum_{n>=0} (-1)^n * (2*n+1 + 9*x^(n+1)) * x^(n*(n+1)) / (1 - 9*x^(n+1))^(n+2).
a(n) ~ 2*n*3^(2*n). - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
G.f.: A(x) = 1 + 27*x + 402*x^2 + 5103*x^3 + 58959*x^4 + 649539*x^5 + 6907037*x^6 + 71744535*x^7 + 731768013*x^8 + 7360989480*x^9 + 73222111566*x^10 + ...
such that
A(x) = 1 + 3*x*(9-x) + 5*x^2*(9-x^2)^2 + 7*x^3*(9-x^3)^3 + 9*x^4*(9-x^4)^4 + 11*x^5*(9-x^5)^5 + 13*x^6*(9-x^6)^6 + 15*x^7*(9-x^7)^7 + ...
Also,
A(x) = (1 + 9*x)/(1 - 9*x)^2 - (3 + 9*x^2)*x^2/(1 - 9*x^2)^3 + (5 + 9*x^3)*x^6/(1 - 9*x^3)^4 - (7 + 9*x^4)*x^12/(1 - 9*x^4)^5 + (9 + 9*x^5)*x^20/(1 - 9*x^5)^6 - (11 + 9*x^6)*x^30/(1 - 9*x^6)^7 + (13 + 9*x^7)*x^42/(1 - 9*x^7)^8 + ...
RELATED SERIES.
A(x) is congruent modulo 9 to
A(x) (mod 9) = 1 - 3*x^2 + 5*x^6 - 7*x^12 + 9*x^20 - 11*x^30 + 13*x^42 - 15*x^56 + 17*x^72 - 19*x^90 + 21*x^110 + ... + (-1)^n*(2*n+1)*x^(n*(n+1)) + ...
The cube root of the g.f. is an integer series:
A(x)^(1/3) = 1 + 9*x + 53*x^2 + 504*x^3 + 3479*x^4 + 34362*x^5 + 248799*x^6 + 2483091*x^7 + 18383088*x^8 + 185472450*x^9 + 1378756330*x^10 + ... + A326606(n)*x^n + ...
which is congruent modulo 3 to Product_{n>=1} 1 - x^(2*n),
A(x)^(1/3) (mod 3) = 1 - x^2 - x^4 + x^10 + x^14 - x^24 - x^30 + x^44 + x^52 - x^70 - x^80 + x^102 + x^114 - x^140 - x^154 + x^184 + x^200 + ...
PROG
(PARI) /* By definition */
{a(n) = my(A = sum(m=0, n, (2*m + 1) * x^m * (9 - x^m + x*O(x^n))^m)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Accelerated series */
{a(n) = my(A = sum(m=0, sqrtint(n+1), (-1)^m * (2*m + 1 + 9*x^(m+1))* x^(m*(m+1)) / (1 - 9*x^(m+1) + x*O(x^n))^(m+2) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A326606.
Sequence in context: A251770 A033280 A125462 * A296853 A036222 A022655
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 16:32 EST 2023. Contains 367680 sequences. (Running on oeis4.)