login
A036222
Expansion of 1/(1-3*x)^9; 9-fold convolution of A000244 (powers of 3).
12
1, 27, 405, 4455, 40095, 312741, 2189187, 14073345, 84440070, 478493730, 2583866142, 13389124554, 66945622770, 324428787270, 1529449997130, 7035469986798, 31659614940591, 139674771796725, 605257344452475
OFFSET
0,2
COMMENTS
With a different offset, number of n-permutations (n>=8) of 4 objects: u, v, z, x with repetition allowed, containing exactly eight (8) u's. Example: a(1)=27 because we have uuuuuuuuv, uuuuuuuuz, uuuuuuuux, uuuuuuuvu, uuuuuuuzu, uuuuuuuxu, uuuuuuvuu, uuuuuuzuu, uuuuuuxuu, uuuuuvuuu, uuuuuzuuu, uuuuuxuuu, uuuuvuuuu, uuuuzuuuu, uuuuxuuuu, uuuvuuuuu, uuuzuuuuu, uuuxuuuuu, uuvuuuuuu, uuzuuuuuu, uuxuuuuuu, uvuuuuuuu, uzuuuuuuu, uxuuuuuuu, vuuuuuuuu, zuuuuuuuu, xuuuuuuuu. - Zerinvary Lajos, Jun 23 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (27,-324,2268,-10206,30618,-61236,78732,-59049,19683).
FORMULA
a(n) = 3^n*binomial(n+8, 8).
a(n) = A027465(n+9, 9).
G.f.: 1/(1-3*x)^9.
a(0)=1, a(1)=27, a(2)=405, a(3)=4455, a(4)=40095, a(5)=312741, a(6)=2189187, a(7)=14073345, a(8)=84440070, a(n) = 27*a(n-1) - 324*a(n-2) + 2268*a(n-3) - 10206*a(n-4) + 30618*a(n-5) - 61236*a(n-6) + 78732*a(n-7) - 59049*a(n-8) + 19683*a(n-9). - Harvey P. Dale, Jan 07 2016
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 43632/35 - 3072*log(3/2).
Sum_{n>=0} (-1)^n/a(n) = 393216*log(4/3) - 3959208/35. (End)
MAPLE
seq(3^n*binomial(n+8, 8), n=0..18); # Zerinvary Lajos, Jun 23 2008
MATHEMATICA
Table[3^n*Binomial[n+8, 8], {n, 0, 20}] (* Zerinvary Lajos, Jan 31 2010 *)
CoefficientList[Series[1/(1-3x)^9, {x, 0, 30}], x] (* or *) LinearRecurrence[{27, -324, 2268, -10206, 30618, -61236, 78732, -59049, 19683}, {1, 27, 405, 4455, 40095, 312741, 2189187, 14073345, 84440070}, 30] (* Harvey P. Dale, Jan 07 2016 *)
PROG
(Sage) [3^n*binomial(n+8, 8) for n in range(30)] # Zerinvary Lajos, Mar 13 2009
(Magma) [3^n*Binomial(n+8, 8): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
CROSSREFS
Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), this sequence (m=8), A036223 (m=9), A172362 (m=10).
Sequence in context: A125462 A326605 A296853 * A022655 A155988 A096950
KEYWORD
easy,nonn
STATUS
approved