login
A036219
Expansion of 1/(1-3*x)^6; 6-fold convolution of A000244 (powers of 3).
14
1, 18, 189, 1512, 10206, 61236, 336798, 1732104, 8444007, 39405366, 177324147, 773778096, 3288556908, 13660159464, 55616363532, 222465454128, 875957725629, 3400777052442, 13036312034361, 49400761393368, 185252855225130, 688082033693340, 2533392942234570
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-135,540,-1215,1458,-729).
FORMULA
a(n) = 3^n*binomial(n+5, 5).
a(n) = A027465(n+6, 6).
G.f.: 1/(1-3*x)^6.
E.g.f.: (1/40)*(40 + 600*x + 1800*x^2 + 1800*x^3 + 675*x^4 + 81*x^5)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 240*log(3/2) - 385/4.
Sum_{n>=0} (-1)^n/a(n) = 3840*log(4/3) - 4415/4. (End)
MAPLE
seq(3^n*binomial(n+5, 5), n=0..30); # Zerinvary Lajos, Jun 13 2008
MATHEMATICA
Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
CoefficientList[Series[1/(1-3x)^6, {x, 0, 30}], x] (* or *) LinearRecurrence[ {18, -135, 540, -1215, 1458, -729}, {1, 18, 189, 1512, 10206, 61236}, 30] (* Harvey P. Dale, Jan 02 2022 *)
PROG
(Sage) [3^n*binomial(n+5, 5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
(Magma) [3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
CROSSREFS
Cf. A027465.
Sequences of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), this sequence (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).
Sequence in context: A341393 A023016 A073385 * A022646 A268447 A259163
KEYWORD
easy,nonn
STATUS
approved