OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..400
Index entries for linear recurrences with constant coefficients, signature (18,-135,540,-1215,1458,-729).
FORMULA
a(n) = 3^n*binomial(n+5, 5).
a(n) = A027465(n+6, 6).
G.f.: 1/(1-3*x)^6.
E.g.f.: (1/40)*(40 + 600*x + 1800*x^2 + 1800*x^3 + 675*x^4 + 81*x^5)*exp(3*x). - G. C. Greubel, May 19 2021
From Amiram Eldar, Sep 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 240*log(3/2) - 385/4.
Sum_{n>=0} (-1)^n/a(n) = 3840*log(4/3) - 4415/4. (End)
MAPLE
seq(3^n*binomial(n+5, 5), n=0..30); # Zerinvary Lajos, Jun 13 2008
MATHEMATICA
Table[3^n*Binomial[n+5, 5], {n, 0, 30}] (* G. C. Greubel, May 19 2021 *)
CoefficientList[Series[1/(1-3x)^6, {x, 0, 30}], x] (* or *) LinearRecurrence[ {18, -135, 540, -1215, 1458, -729}, {1, 18, 189, 1512, 10206, 61236}, 30] (* Harvey P. Dale, Jan 02 2022 *)
PROG
(Sage) [3^n*binomial(n+5, 5) for n in range(30)] # Zerinvary Lajos, Mar 10 2009
(Magma) [3^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved