login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073385
Eighth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
2
1, 18, 189, 1500, 9945, 58014, 307197, 1507176, 6950295, 30443270, 127666539, 515754252, 2017069431, 7667214570, 28419251715, 102997948704, 365832349542, 1275914693196, 4376992440590
OFFSET
0,2
COMMENTS
For a(n) in terms of U(n+1) and U(n) with U(n) = A000129(n+1) see the row polynomials of triangles A058402 and A058403 and the comment there.
LINKS
Index entries for linear recurrences with constant coefficients, signature (18,-135,528,-1044,504,1764,-2448,-1422,3308,1422, -2448,-1764,504,1044,528,135,18,1).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073384(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k)*binomial(n-k+8, 8)*binomial(n-k, k).
G.f.: 1/(1-(2+x)*x)^9.
a(n) = F''''''''(n+9, 2)/8!, that is, 1/8! times the 8th derivative of the (n+9)-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
MATHEMATICA
CoefficientList[Series[1/(1-(2+x)x)^9, {x, 0, 20}], x] (* Harvey P. Dale, Apr 26 2017 *)
PROG
(Sage) taylor( 1/(1-2*x-x^2)^9, x, 0, 27).list() # G. C. Greubel, Oct 03 2022
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^9 )); // G. C. Greubel, Oct 03 2022
CROSSREFS
Ninth (m=8) column of triangle A054456.
Sequence in context: A288836 A341393 A023016 * A036219 A022646 A268447
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved