OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (14,-77,196,-161,-238,427,184,-427,-238,161,196,77, 14,1).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n-k+6, 6) * binomial(n-k, k).
a(n) = (7*(173205 +212028*n +96812*n^2 +20728*n^3 +2092*n^4 +80*n^5)*(n+1)* U(n+1) + (262125 +435150*n +232364*n^2 +54548*n^3 +5836*n^4 +232*n^5)*(n+2)* U(n) )/(6!*8^4), with U(n) = A000129(n+1), n >= 0.
G.f.: 1/(1-(2+x)*x)^7.
a(n) = F''''''(n+7, 2)/6!, that is, 1/6! times the 6th derivative of the (n+7)-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^2)^7, {x, 0, 70}], x] (* G. C. Greubel, Oct 02 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^7 )); // G. C. Greubel, Oct 02 2022
(SageMath)
def A073383_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2)^7 ).list()
A073383_list(40) # G. C. Greubel, Oct 02 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved