login
A073383
Sixth convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
2
1, 14, 119, 784, 4396, 22008, 101220, 435696, 1777986, 6943244, 26129950, 95282992, 338108876, 1171554776, 3975215844, 13239402960, 43364985867, 139925413866, 445409413421, 1400429394784, 4353771487912
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-77,196,-161,-238,427,184,-427,-238,161,196,77, 14,1).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A073382(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n-k+6, 6) * binomial(n-k, k).
a(n) = (7*(173205 +212028*n +96812*n^2 +20728*n^3 +2092*n^4 +80*n^5)*(n+1)* U(n+1) + (262125 +435150*n +232364*n^2 +54548*n^3 +5836*n^4 +232*n^5)*(n+2)* U(n) )/(6!*8^4), with U(n) = A000129(n+1), n >= 0.
G.f.: 1/(1-(2+x)*x)^7.
a(n) = F''''''(n+7, 2)/6!, that is, 1/6! times the 6th derivative of the (n+7)-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^2)^7, {x, 0, 70}], x] (* G. C. Greubel, Oct 02 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^7 )); // G. C. Greubel, Oct 02 2022
(SageMath)
def A073383_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2)^7 ).list()
A073383_list(40) # G. C. Greubel, Oct 02 2022
CROSSREFS
Seventh (m=6) column of triangle A054456, A073382.
Cf. A000129.
Sequence in context: A284766 A341390 A023012 * A022642 A268446 A221230
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved