login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073380
Third convolution of A000129(n+1) (generalized (2,1)-Fibonacci, called Pell numbers), n>=0, with itself.
2
1, 8, 44, 200, 810, 3032, 10716, 36248, 118435, 376240, 1167720, 3553840, 10636180, 31375440, 91392040, 263266512, 750922021, 2123059448, 5955034740, 16584106040, 45884989054, 126202397032
OFFSET
0,2
LINKS
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A000129(k+1) and c(k) = A054457(k).
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * binomial(n-k+3, 3) * binomial(n-k, k).
a(n) = ((147 +94*n +14*n^2)*(n+1)*U(n+1) + 3*(15 +12*n +2*n^2)*(n+2)*U(n))/ (3*2^7), with U(n) = A000129(n+1), n >= 0.
G.f.: 1/(1-(2+x)*x)^4.
a(n) = F'''(n+4, 2)/6, that is, 1/6 times the 3rd derivative of the (n+4)th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
MATHEMATICA
CoefficientList[Series[1/(1-2*x-x^2)^4, {x, 0, 40}], x] (* G. C. Greubel, Oct 02 2022 *)
LinearRecurrence[{8, -20, 8, 26, -8, -20, -8, -1}, {1, 8, 44, 200, 810, 3032, 10716, 36248}, 30] (* Harvey P. Dale, Feb 18 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-x^2)^4 )); // G. C. Greubel, Oct 02 2022
(SageMath)
def A073380_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2)^4 ).list()
A073380_list(30) # G. C. Greubel, Oct 02 2022
CROSSREFS
Fourth (m=3) column of triangle A054456, A054457 (m=2).
Cf. A000129.
Sequence in context: A283077 A023007 A169795 * A273603 A270902 A241395
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved