login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073377
Seventh convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
3
1, 8, 52, 264, 1194, 4872, 18516, 66264, 226083, 740608, 2344232, 7202416, 21562164, 63090288, 180884088, 509245776, 1410356133, 3848340312, 10359516684, 27544099704, 72406891326, 188356187448
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (8,-12,-56,154,168,-700,-328,1791,656,-2800,-1344, 2464,1792,-768,-1024,-256).
FORMULA
a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073376(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+7, 7) * binomial(n-k, k) * 2^k.
a(n) = ((328247920 +332102604*n +131833680*n^2 +26450901*n^3 +2844099*n^4 + 156087*n^5 +3429*n^6)*(n+1)*U(n+1) + 2(141143240 +150941694*n +62335731*n^2 + 12873492*n^3 +1414314*n^4 +78894*n^5 +1755*n^6)*(n+2)*U(n))/(7!*3^11) with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1-(1+2*x)*x)^8 = 1/((1+x)*(1-2*x))^8.
E.g.f.: (1/(7!*3^12))*( 4096*(596225 +4177950*x +7304850*x^2 +5109300*x^3 +1691550*x^4 +278964*x^5 +21924*x^6 +648*x^7)*exp(2*x) + (236325040 -333132240*x +158026680*x^2 -34637400*x^3 +3921750*x^4 -234738*x^5 +6993*x^6 -81*x^7)*exp(-x) ). - G. C. Greubel, Sep 29 2022
MATHEMATICA
Table[(2^(n+8)*(9539600 +17240268*n +11555460*n^2 +3849489*n^3 +703080*n^4 +71442*n^5 +3780*n^6 +81*n^7) +(-1)^n*(236325040 +225702732*n +87290028*n^2 +17880849*n^3 +2109240*n^4 +144018*n^5 +5292*n^6 +81*n^7))/(7!*3^12), {n, 0, 60}] (* G. C. Greubel, Sep 29 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^8 )); // G. C. Greubel, Sep 29 2022
(SageMath)
def A073377(n): return (2^(n+8)*(9539600 +17240268*n +11555460*n^2 +3849489*n^3 +703080*n^4 +71442*n^5 +3780*n^6 +81*n^7) +(-1)^n*(236325040 +225702732*n +87290028*n^2 +17880849*n^3 +2109240*n^4 +144018*n^5 +5292*n^6 +81*n^7))/(factorial(7)*3^12)
[A073377(n) for n in range(40)] # G. C. Greubel, Sep 29 2022
CROSSREFS
Eighth (m=7) column of triangle A073370.
Sequence in context: A107584 A323940 A027225 * A055283 A193427 A022732
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 02 2002
STATUS
approved