The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A193427 G.f.: Product_{k>=1} 1/(1-x^k)^(8*k). 9
 1, 8, 52, 272, 1266, 5344, 20992, 77584, 272727, 917936, 2975492, 9328736, 28391410, 84122688, 243265848, 688008048, 1906476351, 5184024112, 13851270944, 36409640400, 94255399886, 240529147072, 605574003464, 1505340071744 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Previous name was: Number of plane partitions of n into parts of 8 kinds. In general, if g.f. = Product_{k>=1} 1/(1-x^k)^(m*k) and m > 0, then a(n) ~ 2^(m/36 - 1/3) * exp(m/12 + 3 * 2^(-2/3) * m^(1/3) * zeta(3)^(1/3) * n^(2/3)) * (m*zeta(3))^(m/36 + 1/6) / (A^m * sqrt(3*Pi) * n^(m/36 + 2/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19. FORMULA G.f.: Product_{k>=1} (1-x^k)^(-8*k). a(n) ~ 2^(19/18) * zeta(3)^(7/18) * exp(2/3 + 3 * 2^(1/3) * zeta(3)^(1/3) * n^(2/3)) / (A^8 * sqrt(3*Pi) * n^(8/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015 G.f.: exp(8*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018 Euler transform of 8*k. - Georg Fischer, Aug 15 2020 MAPLE a:= proc(n) option remember; `if`(n=0, 1, 8*add(       a(n-j)*numtheory[sigma][2](j), j=1..n)/n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015 MATHEMATICA ANS = Block[{kmax = 50},   Coefficient[    Series[Product[1/(1 - x^k)^(8 k), {k, 1, kmax}], {x, 0, kmax}], x,    Range[0, kmax]]] (* Second program: *) a[n_] := a[n] = If[n==0, 1, 8*Sum[a[n-j]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 07 2017, after Alois P. Heinz *) PROG (PARI) Vec(prod(k=1, 100\2, (1-x^k)^(-8*k), 1+O(x^101))) \\ Charles R Greathouse IV, Aug 09 2011 CROSSREFS Cf. A000219 (m=1), A161870 (m=2), A255610 (m=3), A255611 (m=4), A255612 (m=5), A255613 (m=6), A255614 (m=7). Cf. A023007, A023003, A000712. Column k=8 of A255961. Sequence in context: A027225 A073377 A055283 * A022732 A256047 A227732 Adjacent sequences:  A193424 A193425 A193426 * A193428 A193429 A193430 KEYWORD nonn AUTHOR Martin Y. Veillette, Jul 28 2011 EXTENSIONS New name from Vaclav Kotesovec, Mar 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 04:25 EDT 2021. Contains 346340 sequences. (Running on oeis4.)