login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255961
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is Euler transform of (j->j*k).
18
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 13, 0, 1, 5, 18, 37, 47, 24, 0, 1, 6, 25, 64, 111, 110, 48, 0, 1, 7, 33, 100, 215, 303, 258, 86, 0, 1, 8, 42, 146, 370, 660, 804, 568, 160, 0, 1, 9, 52, 203, 588, 1251, 1938, 2022, 1237, 282, 0
OFFSET
0,8
COMMENTS
A(n,k) is the number of partitions of n when parts i are of k*i kinds. A(2,2) = 7: [2a], [2b], [2c], [2d], [1a,1a], [1a,1b], [1b,1b].
LINKS
FORMULA
G.f. of column k: Product_{j>=1} 1/(1-x^j)^(j*k).
T(n,k) = Sum_{i=0..k} C(k,i) * A257673(n,k-i).
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 7, 12, 18, 25, 33, 42, ...
0, 6, 18, 37, 64, 100, 146, 203, ...
0, 13, 47, 111, 215, 370, 588, 882, ...
0, 24, 110, 303, 660, 1251, 2160, 3486, ...
0, 48, 258, 804, 1938, 4005, 7459, 12880, ...
0, 86, 568, 2022, 5400, 12150, 24354, 44885, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 02 2016, after Alois P. Heinz *)
CROSSREFS
Rows n=0-3 give: A000012, A001477, A055998, A101853.
Main diagonal gives A255672.
Antidiagonal sums give A299166.
Sequence in context: A320782 A191588 A106450 * A297328 A378289 A362079
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 11 2015
STATUS
approved