login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A362079
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^n)^k.
5
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 10, 0, 1, 4, 12, 28, 45, 0, 1, 5, 18, 55, 145, 251, 0, 1, 6, 25, 92, 315, 896, 1624, 0, 1, 7, 33, 140, 571, 2106, 6328, 11908, 0, 1, 8, 42, 200, 930, 4076, 15946, 50212, 97545, 0, 1, 9, 52, 273, 1410, 7026, 32718, 134730, 441489, 880660, 0
OFFSET
0,8
FORMULA
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-k,j) * binomial(n*j,n-j) = Sum_{j=0..n} binomial(j+k-1,j) * binomial(n*j,n-j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 7, 12, 18, 25, ...
0, 10, 28, 55, 92, 140, ...
0, 45, 145, 315, 571, 930, ...
0, 251, 896, 2106, 4076, 7026, ...
PROG
(PARI) T(n, k) = sum(j=0, n, binomial(j+k-1, j)*binomial(n*j, n-j));
CROSSREFS
Columns k=0..3 give A000007, A099237, A362084, A362085.
Main diagonal gives A362080.
Cf. A362078.
Sequence in context: A255961 A297328 A378289 * A378292 A055137 A143325
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 08 2023
STATUS
approved