login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362079
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = [x^n] 1/(1 - x*(1+x)^n)^k.
5
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 10, 0, 1, 4, 12, 28, 45, 0, 1, 5, 18, 55, 145, 251, 0, 1, 6, 25, 92, 315, 896, 1624, 0, 1, 7, 33, 140, 571, 2106, 6328, 11908, 0, 1, 8, 42, 200, 930, 4076, 15946, 50212, 97545, 0, 1, 9, 52, 273, 1410, 7026, 32718, 134730, 441489, 880660, 0
OFFSET
0,8
FORMULA
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(-k,j) * binomial(n*j,n-j) = Sum_{j=0..n} binomial(j+k-1,j) * binomial(n*j,n-j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 7, 12, 18, 25, ...
0, 10, 28, 55, 92, 140, ...
0, 45, 145, 315, 571, 930, ...
0, 251, 896, 2106, 4076, 7026, ...
PROG
(PARI) T(n, k) = sum(j=0, n, binomial(j+k-1, j)*binomial(n*j, n-j));
CROSSREFS
Columns k=0..3 give A000007, A099237, A362084, A362085.
Main diagonal gives A362080.
Cf. A362078.
Sequence in context: A255961 A297328 A378289 * A378292 A055137 A143325
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 08 2023
STATUS
approved