OFFSET
0,8
FORMULA
G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(2/k) * (1 + x * A_k(x)^(2/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A006605.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+1) + x^2 * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k+1) + T(n-2,k+3) for n > 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 11, 28, 52, 84, 125, 176, ...
0, 46, 123, 240, 407, 635, 936, ...
0, 207, 572, 1155, 2028, 3276, 4998, ...
0, 979, 2769, 5733, 10332, 17140, 26860, ...
PROG
(PARI) T(n, k, t=2, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
CROSSREFS
KEYWORD
AUTHOR
Seiichi Manyama, Nov 21 2024
STATUS
approved