login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2). 4
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Seiichi Manyama, Antidiagonals n = 0..139, flattened

FORMULA

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.

A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).

n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

EXAMPLE

Square array begins:

   1,   1,     1,     1,      1,       1,       1, ...

   0,   1,     2,     3,      4,       5,       6, ...

   0,   3,     8,    15,     24,      35,      48, ...

   0,   7,    32,    81,    160,     275,     432, ...

   0,  19,   136,   459,   1120,    2275,    4104, ...

   0,  51,   592,  2673,   8064,   19375,   40176, ...

   0, 141,  2624, 15849,  59136,  168125,  400896, ...

   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...

MATHEMATICA

A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, _] = 1; A[_, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-Fran├žois Alcover, May 07 2019 *)

CROSSREFS

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.

Main diagonal gives A092366.

Cf. A107267, A292627, A307819, A307847, A307855, A307883.

Sequence in context: A297328 A055137 A143325 * A128888 A305401 A306100

Adjacent sequences:  A307907 A307908 A307909 * A307911 A307912 A307913

KEYWORD

nonn,tabl

AUTHOR

Seiichi Manyama, May 05 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 21:12 EDT 2020. Contains 334671 sequences. (Running on oeis4.)