OFFSET
0,4
COMMENTS
Also coefficient of x^n in the expansion of 1/sqrt(1 + 2*n*x + n*(n+4)*x^2).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..386
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,k) * binomial(n-k,k) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,2*k) * binomial(2*k,k).
For n>0, a(n) = (-n)^n * Hypergeometric2F1(1/2 - n/2, -n/2, 1, -4/n). - Vaclav Kotesovec, May 12 2021
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * Binomial[2*k, k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Join[{1}, Table[(-n)^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
PROG
(PARI) {a(n) = polcoef((1-n*x-n*x^2)^n, n)}
(PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k))}
(PARI) {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k))}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 05 2019
STATUS
approved