login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307883
Square array read by descending antidiagonals: T(n, k) where column k is the expansion of 1/sqrt(1 - 2*(k+1)*x + ((k-1)*x)^2).
14
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 20, 1, 1, 5, 22, 63, 70, 1, 1, 6, 33, 136, 321, 252, 1, 1, 7, 46, 245, 886, 1683, 924, 1, 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1, 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1, 1, 10, 97, 848, 6145, 33876, 127905, 281488, 265729, 48620, 1
OFFSET
0,5
COMMENTS
Column k is the diagonal of the rational function 1 / ((1-x)*(1-y) - k*x*y). - Seiichi Manyama, Jul 11 2020
More generally, column k is the diagonal of the rational function r / ((1-r*x)*(1-r*y) + r-1 - (k+r-1)*r*x*y) for any nonzero real number r. - Seiichi Manyama, Jul 22 2020
LINKS
FORMULA
T(n,k) is the coefficient of x^n in the expansion of (1 + (k+1)*x + k*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-1) * T(n-2,k).
T(n,k) = hypergeom([-k, -k], [1], n - k), (triangular form). - Detlef Meya, May 13 2024
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 13, 22, 33, 46, 61, ...
1, 20, 63, 136, 245, 396, 595, ...
1, 70, 321, 886, 1921, 3606, 6145, ...
1, 252, 1683, 5944, 15525, 33876, 65527, ...
1, 924, 8989, 40636, 127905, 324556, 712909, ...
Seen as a triangle T(n, k):
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 6, 1;
[4] 1, 4, 13, 20, 1;
[5] 1, 5, 22, 63, 70, 1;
[6] 1, 6, 33, 136, 321, 252, 1;
[7] 1, 7, 46, 245, 886, 1683, 924, 1;
[8] 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1;
[9] 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1;
MAPLE
# Seen as a triangle read by rows:
T := (n, k) -> simplify(hypergeom([-k, -k], [1], n - k)):
seq(lprint(seq(T(n, k), k = 0..n)), n = 0..9); # Peter Luschny, May 13 2024
MATHEMATICA
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
(* Seen as a triangle read by rows: *)
T[n_, k_] := HypergeometricPFQ[{-k, -k}, {1}, n - k];
Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, May 13 2024 *)
CROSSREFS
Columns k=0..6 give A000012, A000984, A001850, A069835, A084771, A084772, A098659.
Main diagonal gives A187021.
T(n,n+1) gives A335309.
Sequence in context: A365623 A336707 A128325 * A111528 A363007 A144303
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 02 2019
STATUS
approved