login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363007
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - f^k(x)), where f(x) = exp(x) - 1.
4
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 23, 75, 120, 1, 1, 6, 36, 175, 541, 720, 1, 1, 7, 52, 342, 1662, 4683, 5040, 1, 1, 8, 71, 594, 4048, 18937, 47293, 40320, 1, 1, 9, 93, 949, 8444, 57437, 251729, 545835, 362880, 1, 1, 10, 118, 1425, 15775, 143783, 950512, 3824282, 7087261, 3628800
OFFSET
0,6
FORMULA
T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.
T(n,k) = A153278(k,n) for n >= 1 and k >= 1.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
6, 13, 23, 36, 52, 71, ...
24, 75, 175, 342, 594, 949, ...
120, 541, 1662, 4048, 8444, 15775, ...
PROG
(PARI) T(n, k) = if(k==0, n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
CROSSREFS
Columns k=0..5 give A000142, A000670, A083355, A099391, A363008, A363009.
Main diagonal gives A363010.
Sequence in context: A128325 A307883 A111528 * A144303 A370072 A287024
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, May 12 2023
STATUS
approved