login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363010
a(n) = n! * [x^n] 1/(1 - f^n(x)), where f(x) = exp(x) - 1.
2
1, 1, 4, 36, 594, 15775, 618838, 33757864, 2448904188, 228290728635, 26617527649365, 3797508644987398, 651082351708066303, 132130157056046918808, 31333332827346731906130, 8587011712002719806274022, 2693586800519167315881703732, 958983405298849163873718493941
OFFSET
0,3
LINKS
FORMULA
a(n) = T(n,n), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.
MAPLE
b:= proc(n, t, m) option remember; `if`(n=0, `if`(t<2, m!,
b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..20); # Alois P. Heinz, May 12 2023
CROSSREFS
Main diagonal of A363007.
Main diagonal of A153278 (for n>=1).
Sequence in context: A346292 A086879 A372241 * A263445 A241029 A002761
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 12 2023
STATUS
approved