login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n! * [x^n] 1/(1 - f^n(x)), where f(x) = exp(x) - 1.
2

%I #21 May 12 2023 16:26:33

%S 1,1,4,36,594,15775,618838,33757864,2448904188,228290728635,

%T 26617527649365,3797508644987398,651082351708066303,

%U 132130157056046918808,31333332827346731906130,8587011712002719806274022,2693586800519167315881703732,958983405298849163873718493941

%N a(n) = n! * [x^n] 1/(1 - f^n(x)), where f(x) = exp(x) - 1.

%H Alois P. Heinz, <a href="/A363010/b363010.txt">Table of n, a(n) for n = 0..246</a>

%F a(n) = T(n,n), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.

%p b:= proc(n, t, m) option remember; `if`(n=0, `if`(t<2, m!,

%p b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 12 2023

%Y Main diagonal of A363007.

%Y Main diagonal of A153278 (for n>=1).

%Y Cf. A139383, A261280, A346802, A351433.

%K nonn

%O 0,3

%A _Seiichi Manyama_, May 12 2023