login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346802
Number of ways to start with set {1,2,...,n} and then repeat (n+1) times: partition each set into subsets.
3
1, 1, 4, 35, 561, 14532, 558426, 29947185, 2141867440, 197304236151, 22773405820375, 3221070321954212, 548135428211610344, 110514990079832223628, 26057791266228066121614, 7105134240266115177248187, 2218719629100693497237788887, 786736247267010426995743418575
OFFSET
0,3
COMMENTS
Also the number of (n+2)-level labeled rooted trees with n leaves.
LINKS
FORMULA
a(n) = n! * [x^n] 1 + g^(n+2)(x), where g(x) = exp(x)-1.
a(n) = A144150(n,n+1).
Conjecture: a(n) ~ c * n^(2*n - 5/6) / (exp(n) * 2^n), where c = 42.345... - Vaclav Kotesovec, Aug 11 2021
MAPLE
a:= n-> (g-> coeff(series(1+(g@@(n+2))(x), x, n+1), x, n)*n!)(x-> exp(x)-1):
seq(a(n), n=0..20);
# second Maple program:
A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))
end:
a:= n-> A(n, n+1):
seq(a(n), n=0..20);
# third Maple program:
b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=0, 1,
b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, t_, m_] := b[n, t, m] = If[n == 0, If[t == 0, 1, b[m, t - 1, 0]], m*b[n - 1, t, m] + b[n - 1, t, m + 1]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 18 2023, after 3rd Maple program *)
CROSSREFS
First upper diagonal of A144150.
Sequence in context: A334412 A238390 A251591 * A376111 A351730 A125798
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 04 2021
STATUS
approved