|
|
A346803
|
|
Numbers that are the sum of nine squares in ten or more ways.
|
|
4
|
|
|
63, 65, 68, 71, 72, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
65 is a term because 65 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 6^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 5^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 4^2 + 4^2 + 4^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2 = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 9):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|