OFFSET
1,1
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
From Chai Wah Wu, May 09 2024: (Start)
All integers >= 85 are terms. Proof: since 594 can be written as the sum of 3 positive squares in 10 ways (see A025427) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 628 can be written as a sum of 8 positive squares in 10 or more ways. Integers from 85 to 627 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 12.
G.f.: x*(-x^11 + x^10 - x^9 + x^8 - 2*x^5 + 2*x^4 - x^3 + x^2 - 69*x + 70)/(x - 1)^2. (End)
EXAMPLE
71 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2
= 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2
= 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2
= 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
= 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
so 71 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
(Python)
def A345397(n): return (70, 71, 73, 74, 77, 78, 79, 80, 82, 83)[n-1] if n<11 else n+74 # Chai Wah Wu, May 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
David Consiglio, Jr., Jun 20 2021
STATUS
approved