login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345497
Numbers that are the sum of eight squares in ten or more ways.
5
70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131
OFFSET
1,1
FORMULA
From Chai Wah Wu, May 09 2024: (Start)
All integers >= 85 are terms. Proof: since 594 can be written as the sum of 3 positive squares in 10 ways (see A025427) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 628 can be written as a sum of 8 positive squares in 10 or more ways. Integers from 85 to 627 are terms by inspection.
a(n) = 2*a(n-1) - a(n-2) for n > 12.
G.f.: x*(-x^11 + x^10 - x^9 + x^8 - 2*x^5 + 2*x^4 - x^3 + x^2 - 69*x + 70)/(x - 1)^2. (End)
EXAMPLE
71 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2
= 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2
= 1^2 + 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2
= 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2
= 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2
= 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
= 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 + 4^2
so 71 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 8):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 10])
for x in range(len(rets)):
print(rets[x])
(Python)
def A345397(n): return (70, 71, 73, 74, 77, 78, 79, 80, 82, 83)[n-1] if n<11 else n+74 # Chai Wah Wu, May 09 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved