login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to start with set {1,2,...,n} and then repeat (n+1) times: partition each set into subsets.
3

%I #17 Nov 18 2023 10:38:30

%S 1,1,4,35,561,14532,558426,29947185,2141867440,197304236151,

%T 22773405820375,3221070321954212,548135428211610344,

%U 110514990079832223628,26057791266228066121614,7105134240266115177248187,2218719629100693497237788887,786736247267010426995743418575

%N Number of ways to start with set {1,2,...,n} and then repeat (n+1) times: partition each set into subsets.

%C Also the number of (n+2)-level labeled rooted trees with n leaves.

%H Alois P. Heinz, <a href="/A346802/b346802.txt">Table of n, a(n) for n = 0..247</a>

%F a(n) = n! * [x^n] 1 + g^(n+2)(x), where g(x) = exp(x)-1.

%F a(n) = A144150(n,n+1).

%F Conjecture: a(n) ~ c * n^(2*n - 5/6) / (exp(n) * 2^n), where c = 42.345... - _Vaclav Kotesovec_, Aug 11 2021

%p a:= n-> (g-> coeff(series(1+(g@@(n+2))(x), x, n+1), x, n)*n!)(x-> exp(x)-1):

%p seq(a(n), n=0..20);

%p # second Maple program:

%p A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,

%p add(binomial(n-1, j-1)*A(j, k-1)*A(n-j, k), j=1..n))

%p end:

%p a:= n-> A(n, n+1):

%p seq(a(n), n=0..20);

%p # third Maple program:

%p b:= proc(n, t, m) option remember; `if`(n=0, `if`(t=0, 1,

%p b(m, t-1, 0)), m*b(n-1, t, m)+b(n-1, t, m+1))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..20);

%t b[n_, t_, m_] := b[n, t, m] = If[n == 0, If[t == 0, 1, b[m, t - 1, 0]], m*b[n - 1, t, m] + b[n - 1, t, m + 1]];

%t a[n_] := b[n, n, 0];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Nov 18 2023, after 3rd Maple program *)

%Y First upper diagonal of A144150.

%Y Cf. A139383, A261280.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Aug 04 2021