login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A334412
Number of ordered pairs of permutations of [n] avoiding synchronous double descent pairs.
2
1, 1, 4, 35, 545, 13250, 463899, 22106253, 1375915620, 108386009099, 10540705282001, 1240370638524842, 173704235075714947, 28549174106487593365, 5441843626292088857818, 1190762128123996264128849, 296456799935194225886732961, 83321234634397591315509479058
OFFSET
0,3
LINKS
Wikipedia, Permutation
FORMULA
a(n) <= A001044(n) with equality only for n < 3.
EXAMPLE
a(3) = (3!)^2 - 1 = 35: only (321,321) does not avoid synchronous double descent pairs among the ordered pairs of permutations of [3].
MAPLE
b:= proc(n, u, v, t) option remember; `if`(n=0, 1, add(add(
b(n-1, sort([u-j, v-i])[], 1), i=1..v)+add(
b(n-1, sort([u-j, v+i-1])[], 1), i=1..n-v), j=1..u)+add(add(
b(n-1, sort([u+j-1, v-i])[], 1), i=1..v)+add(`if`(t=0, 0,
b(n-1, sort([u+j-1, v+i-1])[], 0)), i=1..n-v), j=1..n-u))
end:
a:= n-> b(n$3, 1):
seq(a(n), n=0..21);
MATHEMATICA
nn = 20; a=Apply[Plus, Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> -1; Map[Select[#, # > 0 &] &,
Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Flatten (* Geoffrey Critzer, Apr 27 2020 *)
CROSSREFS
Column k=0 of A334257.
Cf. A000275 (the same for single descent pairs), A001044.
Sequence in context: A165933 A005973 A007134 * A238390 A251591 A346802
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 27 2020
STATUS
approved