Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 27 2020 20:22:15
%S 1,1,4,35,545,13250,463899,22106253,1375915620,108386009099,
%T 10540705282001,1240370638524842,173704235075714947,
%U 28549174106487593365,5441843626292088857818,1190762128123996264128849,296456799935194225886732961,83321234634397591315509479058
%N Number of ordered pairs of permutations of [n] avoiding synchronous double descent pairs.
%H Alois P. Heinz, <a href="/A334412/b334412.txt">Table of n, a(n) for n = 0..100</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Permutation">Permutation</a>
%F a(n) <= A001044(n) with equality only for n < 3.
%e a(3) = (3!)^2 - 1 = 35: only (321,321) does not avoid synchronous double descent pairs among the ordered pairs of permutations of [3].
%p b:= proc(n, u, v, t) option remember; `if`(n=0, 1, add(add(
%p b(n-1, sort([u-j, v-i])[], 1), i=1..v)+add(
%p b(n-1, sort([u-j, v+i-1])[], 1), i=1..n-v), j=1..u)+add(add(
%p b(n-1, sort([u+j-1, v-i])[], 1), i=1..v)+add(`if`(t=0, 0,
%p b(n-1, sort([u+j-1, v+i-1])[], 0)), i=1..n-v), j=1..n-u))
%p end:
%p a:= n-> b(n$3, 1):
%p seq(a(n), n=0..21);
%t nn = 20; a=Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> -1;Map[Select[#, # > 0 &] &,
%t Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Flatten (* _Geoffrey Critzer_, Apr 27 2020 *)
%Y Column k=0 of A334257.
%Y Cf. A000275 (the same for single descent pairs), A001044.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Apr 27 2020