login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263445
a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
2
1, 1, -1, 4, -36, 600, -16584, 705600, -43751232, 3790108800, -443539877760, 68218849036800, -13478425925184000, 3355402067989171200, -1035218714714606822400, 390189256983139461120000, -177430554756972746695065600, 96269372301568677170319360000
OFFSET
0,4
FORMULA
a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
a(n) ~ (-1)^(n+1)*8*sqrt(2)*n^3*(n/e)^(3*n)*Pi^(1-2*n). - Vladimir Reshetnikov, Sep 05 2016
MAPLE
seq((2*n+1)*(n+1)!*bernoulli(2*n), n=0..50); # Robert Israel, Oct 18 2015
MATHEMATICA
Table[(2n + 1) (n + 1)! BernoulliB[2n], {n, 0, 17}]
PROG
(PARI) vector(30, n, n--; (2*n+1)*(n+1)!*bernfrac(2*n)) \\ Altug Alkan, Oct 18 2015
(Python)
from math import factorial
from sympy import bernoulli
def A263445(n): return (2*n+1)*factorial(n+1)*bernoulli(2*n) # Chai Wah Wu, May 18 2022
CROSSREFS
Bernoulli numbers are A000367/A002445. Cf. A004193, A001332, A000182, A001469.
Sequence in context: A086879 A372241 A363010 * A241029 A002761 A002084
KEYWORD
sign
AUTHOR
STATUS
approved