login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004193
a(n) = -(-1)^n*2*(2*n+1)!*Bernoulli(2*n)/(n!*2^n).
7
1, 1, 5, 63, 1575, 68409, 4729725, 488783295, 71982456975, 14550187083705, 3916321542458325, 1368981608178405375, 608576219802039864375, 337967570725260384533625, 230885276313275432674678125, 191452972504088518574149173375, 190442238700388913304502070009375
OFFSET
1,3
REFERENCES
J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, NY, 1987, p. 35, Eq. 4:2:1.
FORMULA
a(n) ~ 16 * 2^(n+1/2) * Pi^(1/2-2*n) * n^(3/2) * (n/e)^(3*n). - Vladimir Reshetnikov, Sep 05 2016
From Peter Luschny, May 17 2018: (Start)
a(n) ~ 8*sqrt(2*n*Pi)*(2*Pi)^n*(n/(Pi*e))^(3*n)*(2*n+1).
a(n) = |(2^(n+2)*Pochhammer(1/2, n+1)*Bernoulli(2*n)|. (End)
a(n) = -(-2)^(n+3)*n*Zeta(1-2*n)*(n+1/2)!/sqrt(Pi). - Peter Luschny, Jun 21 2020
MAPLE
a:= n-> -(-1)^n*2*(2*n+1)!*bernoulli(2*n)/(n!*2^n):
seq(a(n), n=1..20); # Alois P. Heinz, Jun 13 2016
MATHEMATICA
Table[-((-1)^n 2(2n+1)!BernoulliB[2n])/(n! 2^n), {n, 20}] (* Harvey P. Dale, Oct 05 2012 *)
Table[2 (2n+1)!! Abs@BernoulliB[2n], {n, 20}] (* Vladimir Reshetnikov, Jun 05 2016 *)
PROG
(PARI) a(n)=if(n<1, 0, -(-1)^n*2*(2*n+1)!*bernfrac(2*n)/(n!*2^n))
CROSSREFS
Bernoulli numbers at even indices are A000367/A002445.
Sequence in context: A218102 A306763 A275763 * A193326 A193834 A193875
KEYWORD
nonn,nice
AUTHOR
David W. Cantrell (DWCantrell(AT)sigmaxi.net)
STATUS
approved