login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241029
Sum of n-th powers of divisors of 22.
4
4, 36, 610, 11988, 248914, 5314716, 115151530, 2513845188, 55090232674, 1209627165996, 26585860217050, 584603613083988, 12858141059430034, 282844580595234876, 6222201023261420170, 136884245263581500388, 3011407446068928780994
OFFSET
0,1
FORMULA
G.f.: 2*(2 - 54*x + 343*x^2 - 396*x^3)/((1 - x)*(1 - 2*x)*(1 - 11*x)*(1 - 22*x)). [Bruno Berselli, Apr 17 2014]
a(n) = (1 + 2^n)*(1 + 11^n). [Bruno Berselli, Apr 17 2014]
MATHEMATICA
Total[#^Range[0, 20]&/@Divisors[22]]
Table[(1 + 2^n) (1 + 11^n), {n, 0, 20}] (* Bruno Berselli, Apr 17 2014 *)
LinearRecurrence[{36, -343, 792, -484}, {4, 36, 610, 11988}, 30] (* Harvey P. Dale, May 21 2014 *)
PROG
(Magma) [DivisorSigma(n, 22): n in [0..20]];
(Maxima) makelist((1+2^n)*(1+11^n), n, 0, 20); /* Bruno Berselli, Apr 17 2014 */
CROSSREFS
Cf. sum of n-th powers of divisors of even k: A000051 (k=2), A001576 (k=4), A034488 (k=6), A034496 (k=8), A034517 (k=10), A034660 (k=12), A141013 (k=14), A020514 (k=16), A034661 (k=18), A034662 (k=20), this sequence (k=22), A034664 (k=24), A241030 (k=26), A241031 (k=28), A241032 (k=30), A034665 (k=32), A034666 (k=36), A034667 (k=40), A034668 (k=48), A034669 (k=56), A020516 (k=64), A034671 (k=72), A034672 (k=96), A034673 (k=120), A034674 (k=128), A034675 (k=144).
Sequence in context: A372241 A363010 A263445 * A002761 A002084 A374859
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 17 2014
STATUS
approved