login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034496
Sum of n-th powers of divisors of 8.
5
4, 15, 85, 585, 4369, 33825, 266305, 2113665, 16843009, 134480385, 1074791425, 8594130945, 68736258049, 549822930945, 4398314962945, 35185445863425, 281479271743489, 2251816993685505, 18014467229220865
OFFSET
0,1
COMMENTS
Conjecture: No primes in this sequence (checked for first 10000 terms). [Artur Jasinski, Sep 23 2008]
All terms are composite because a(n) = (1 + 2^n)*(1 + 4^n). [T. D. Noe, Apr 26 2010]
LINKS
Quynh Nguyen, Jean Pedersen, and Hien T. Vu, New Integer Sequences Arising From 3-Period Folding Numbers, Vol. 19 (2016), Article 16.3.1. See Table 1.
FORMULA
G.f.: (4 - 45*x + 140*x^2 - 120*x^3)/((1 - 8*x)*(1 - 4*x)*(1 - 2*x)*(1 - x)). [Bruno Berselli, Apr 17 2014]
a(n) = (2^(4*n) - 1)/( 2^n - 1) = 1 + 2^n + 4^n + 8^n. Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 15*x + 155*x^2 + 1395*x^3 + ... is the o.g.f. for the 3rd subdiagonal of triangle A022166, essentially A006096. - Peter Bala, Apr 07 2015
MATHEMATICA
Total[#^Range[0, 20]&/@Divisors[8]] (* Vincenzo Librandi, Apr 17 2014 *)
DivisorSigma[Range[0, 20], 8] (* Harvey P. Dale, May 16 2020 *)
PROG
(Sage) [sigma(8, n) for n in range(0, 19)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=sigma(8, n) \\ Charles R Greathouse IV, May 16 2011
(Magma) [DivisorSigma(n, 8): n in [0..20]]; // Vincenzo Librandi, Apr 17 2014
CROSSREFS
Sequence in context: A375633 A107874 A237627 * A079155 A306178 A304920
KEYWORD
nonn,easy
AUTHOR
STATUS
approved