login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006096
Gaussian binomial coefficient [ n,3 ] for q=2.
(Formerly M4982)
7
1, 15, 155, 1395, 11811, 97155, 788035, 6347715, 50955971, 408345795, 3269560515, 26167664835, 209386049731, 1675267338435, 13402854502595, 107225699266755, 857817047249091, 6862582190715075, 54900840777134275, 439207459223777475
OFFSET
3,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
FORMULA
G.f.: x^3/((1-x)(1-2x)(1-4x)(1-8x)).
(With a different offset) a(n)=(-1+7*2^n-14*4^n+8*8^n)/21. - James R. Buddenhagen, Dec 14 2003
MAPLE
seq((-1+7*2^n-14*4^n+8*8^n)/21, n=1..20);
A006096:=1/(z-1)/(8*z-1)/(2*z-1)/(4*z-1); # Simon Plouffe in his 1992 dissertation with offset 0
MATHEMATICA
Drop[CoefficientList[Series[x^3/((1 - x) (1 - 2 x) (1 - 4 x) (1 - 8 x)), {x, 0, 30}], x], 3]
QBinomial[Range[3, 30], 3, 2] (* Harvey P. Dale, Jan 28 2013 *)
PROG
(Sage) [gaussian_binomial(n, 3, 2) for n in range(3, 23)] # Zerinvary Lajos, May 24 2009
(Magma) r:=3; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2016
CROSSREFS
Sequence in context: A098685 A223995 A323971 * A346843 A341918 A099915
KEYWORD
nonn,easy,nice
STATUS
approved